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PREDGOVOR MULTIKONFERENCI  

INFORMACIJSKA DRUŽBA 2022 
 
Petindvajseta multikonferenca Informacijska družba je preživela probleme zaradi korone. Zahvala za skoraj 

normalno delovanje konference gre predvsem tistim predsednikom konferenc, ki so kljub prvi pandemiji modernega 

sveta pogumno obdržali visok strokovni nivo.  

 

Pandemija v letih 2020 do danes skoraj v ničemer ni omejila neverjetne rasti IKTja, informacijske družbe, umetne 

inteligence in znanosti nasploh, ampak nasprotno – rast znanja, računalništva in umetne inteligence se nadaljuje z že 

kar običajno nesluteno hitrostjo. Po drugi strani se nadaljuje razpadanje družbenih vrednot ter tragična vojna v 

Ukrajini, ki lahko pljuskne v Evropo. Se pa zavedanje večine ljudi, da je potrebno podpreti stroko, krepi. Konec 

koncev je v 2022 v veljavo stopil not raziskovalni zakon, ki bo izboljšal razmere, predvsem leto za letom povečeval 

sredstva za znanost.  

 

Letos smo v multikonferenco povezali enajst odličnih neodvisnih konferenc, med njimi »Legende računalništva«, s 

katero postavljamo nov mehanizem promocije informacijske družbe. IS 2022 zajema okoli 200 predstavitev, 

povzetkov in referatov v okviru samostojnih konferenc in delavnic ter 400 obiskovalcev. Prireditev so spremljale 

okrogle mize in razprave ter posebni dogodki, kot je svečana podelitev nagrad. Izbrani prispevki bodo izšli tudi v 

posebni številki revije Informatica (http://www.informatica.si/), ki se ponaša s 46-letno tradicijo odlične znanstvene 

revije. Multikonferenco Informacijska družba 2022 sestavljajo naslednje samostojne konference: 

• Slovenska konferenca o umetni inteligenci 

• Izkopavanje znanja in podatkovna skladišča 

• Demografske in družinske analize 

• Kognitivna znanost 

• Kognitonika 

• Legende računalništva 

• Vseprisotne zdravstvene storitve in pametni senzorji 

• Mednarodna konferenca o prenosu tehnologij 

• Vzgoja in izobraževanje v informacijski družbi 

• Študentska konferenca o računalniškem raziskovanju 

• Matcos 2022 

Soorganizatorji in podporniki konference so različne raziskovalne institucije in združenja, med njimi ACM 

Slovenija, SLAIS, DKZ in druga slovenska nacionalna akademija, Inženirska akademija Slovenije (IAS). V imenu 

organizatorjev konference se zahvaljujemo združenjem in institucijam, še posebej pa udeležencem za njihove 

dragocene prispevke in priložnost, da z nami delijo svoje izkušnje o informacijski družbi. Zahvaljujemo se tudi 

recenzentom za njihovo pomoč pri recenziranju. 

 

S podelitvijo nagrad, še posebej z nagrado Michie-Turing, se avtonomna stroka s področja opredeli do najbolj 

izstopajočih dosežkov. Nagrado Michie-Turing za izjemen življenjski prispevek k razvoju in promociji 

informacijske družbe je prejel prof. dr. Jadran Lenarčič. Priznanje za dosežek leta pripada ekipi NIJZ za portal 

zVEM. »Informacijsko limono« za najmanj primerno informacijsko potezo je prejela cenzura na socialnih omrežjih, 

»informacijsko jagodo« kot najboljšo potezo pa nova elektronska osebna izkaznica. Čestitke nagrajencem! 

 

Mojca Ciglarič, predsednik programskega odbora 

Matjaž Gams, predsednik organizacijskega odbora 
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FOREWORD - INFORMATION SOCIETY 2022 
 

The 25th Information Society Multiconference (http://is.ijs.si) survived the COVID-19 problems. The multiconference 

survived due to the conference chairs who bravely decided to continue with their conferences despite the first 

pandemics in the modern era.  

 

The COVID-19 pandemic from 2020 till now did not decrease the growth of ICT, information society, artificial 

intelligence and science overall, quite on the contrary – the progress of computers, knowledge and artificial 

intelligence continued with the fascinating growth rate. However, the downfall of societal norms and progress seems 

to slowly but surely continue along with the tragical war in Ukraine. On the other hand, the awareness of the majority, 

that science and development are the only perspective for prosperous future, substantially grows. In 2020, a new law 

regulating Slovenian research was accepted promoting increase of funding year by year. 

 

The Multiconference is running parallel sessions with 200 presentations of scientific papers at eleven conferences, 

many round tables, workshops and award ceremonies, and 400 attendees. Among the conferences, “Legends of 

computing” introduce the “Hall of fame” concept for computer science and informatics. Selected papers will be 

published in the Informatica journal with its 46-years tradition of excellent research publishing.  

 

The Information Society 2022 Multiconference consists of the following conferences:  

• Slovenian Conference on Artificial Intelligence 

• Data Mining and Data Warehouses 

• Cognitive Science 

• Demographic and family analyses 

• Cognitonics  

• Legends of computing 

• Pervasive health and smart sensing 

• International technology transfer conference 

• Education in information society 

• Student computer science research conference 2022 

• Matcos 2022 

The multiconference is co-organized and supported by several major research institutions and societies, among them 

ACM Slovenia, i.e. the Slovenian chapter of the ACM, SLAIS, DKZ and the second national academy, the Slovenian 

Engineering Academy. In the name of the conference organizers, we thank all the societies and institutions, and 

particularly all the participants for their valuable contribution and their interest in this event, and the reviewers for 

their thorough reviews.  

 

The award for life-long outstanding contributions is presented in memory of Donald Michie and Alan Turing. The 

Michie-Turing award was given to Prof. Dr. Jadran Lenarčič for his life-long outstanding contribution to the 

development and promotion of information society in our country. In addition, the yearly recognition for current 

achievements was awarded to NIJZ for the zVEM platform. The information lemon goes to the censorship on social 

networks. The information strawberry as the best information service last year went to the electronic identity card. 

Congratulations! 

 

Mojca Ciglarič, Programme Committee Chair 

Matjaž Gams, Organizing Committee Chair 
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PREDGOVOR 

 

 

Pomen digitalnih zdravstvenih storitev v zadnjih desetletjih nenehno narašča. Staranje 

prebivalstva je neposredno povezano s povečevanjem števila kroničnih bolnikov, ki jim 

razvoj medicine sicer omogoča zdravstveno oskrbo in posledično tudi podaljševanje 

življenjske dobe, hkrati pa je zdravstveni sistem zaradi tega dodatno obremenjen. Razvoj 

digitalne tehnologije je prinesel vse več dostopnih orodij za stroškovno učinkovito 

vzdrževanje in izboljševanje zdravja in kakovosti življenja ter obenem pripomogel k 

razbremenitvi zdravstva. Nedavna pandemija COVID-19 je dodatno poudarila potrebo po 

zagotavljanju zdravstvenih storitev na daljavo. Tehnološki napredek je sicer nekoliko 

upočasnjen zaradi zakonodaje, saj digitalne tehnologije ne morejo nositi odgovornosti zaradi 

napačnih zdravstvenih odločitev, prav tako je zelo pomembno tudi  varstvo podatkov in 

spoštovanje zasebnosti pacientov. Sodelovanje vseh pomembnih družbenih, zdravstvenih in 

pravnih akterjev tako pomaga postaviti stabilnejše in zanesljivejše temelje za razvoj, uvajanje 

in uporabo digitalnih zdravstvenih tehnologij in storitev. Vseprisotne zdravstvene storitve in 

uporaba pametnih senzorjev so tako ključni deli digitalnega zdravja. Pametni senzorji in razne 

nosljive naprave omogočijo spremljanje na daljavo in in tako dodatno podprejo spremljanje 

zdravstvenega stanja bolnikov v klinikah in izven njih. Dodatno lahko pametni in vseprisotni 

sistemi za spremljanje zdravja zmanjšajo določena tveganja in odkrijejo težave v zgodnejših 

fazah bolezni.  

 

Konferenco »Vseprisotni zdravstveni sistemi in pametni senzorji« organizira EU projekt 

WideHealth, t.i.  »widening« projekt, katerega glavni namen je vzpostavljanje trajnostne 

mreže raziskav med vključenimi partnerji. Konzorcij projekta sestavlja pet partnerjev (trije 

»widening« in dva »non-widening«), ki preko izmenjav in drugih raziskovalnih sodelovanj 

poglabljajo znanje na treh glavnih področjih: »data-driven healthcare«, »human factors in 

pervasive health« in »federated learning«. Namen konference »Vseprisotne zdravstvene 

storitve in pametni senzorji« je izmenjava strokovnega znanja in napredka raziskav na 

omenjenih področjih. Na konferenci bo predstavljenih 12 prispevkov, ki se osredotočajo na 

različne vidike pametnega zaznavanja in vsesplošnega zdravja. V prvem delu konference so 

vključeni prispevki, ki se osredotočajo na prepoznavanje človeških aktivnosti z uporabo 

nosljivih naprav (vključno z novejšimi tehnologijami, npr. pametnimi očali). Prispevki 

drugega dela konference se osredotočajo na objektivno in subjektivno spremljanje duševnega 

zdravja. V zadnjem, tretjem, delu so zbrani prispevki, ki predlagajo nove aplikacije, 

metodologije in IKT rešitve za vseprisotne zdravstvene sisteme ter izboljšanje varnosti in 

zasebnosti v takih sistemih. 
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FOREWORD 

 

 

The importance of digital health is constantly growing in recent decades. The reasons are well 

known: on the one hand, the aging of the population is producing an increasing number of 

chronic patients, and the progress of medicine is keeping them alive and in need of care; on 

the other hand, the progress of digital technology is creating an increasing number of 

available tools to maintain and/or increase health and quality of life cost-effectively. The 

recent COVID-19 pandemic has further emphasized the need to provide remote medical 

services to patients, which has boosted the emergence and adoption of digital technologies, 

especially in telehealth and telemedicine. Technological advances have been slowed mainly 

due to legislation since bad medical decisions cannot be blamed on digital technologies, and 

security and privacy issues also cannot be neglected. However, the involvement of all the 

important social, medical, and legal actors helps set up a more stable and reliable foundation 

for developing, deploying, and using digital health technologies and services. Pervasive health 

and smart sensing are crucial parts of digital health. Smart sensors and wearables can augment 

the healthcare system, enabling remote monitoring and supporting the patient's medical 

condition in and out of the clinics. Furthermore, smart and pervasive health monitoring 

systems can reduce death risks, identifying the issues at earlier stages of the diseases. They 

are the main focus of our "Pervasive Health and Smart Sensing" conference, as the name 

suggests.  

 

The conference is organized by the EU WideHealth project, a widening project that aims to 

conduct research on pervasive eHealth and establish a sustainable network of research and 

dissemination across Europe. It connects five partners (3 widening and two non-widening) to 

share and develop their research on three main topics: data-driven healthcare, human factors 

in pervasive health, and federated machine learning. The Pervasive Health and Smart Sensing 

conference aims to share expertise and research advancements in these areas. The 12 papers 

we have accepted at the conference focus on different aspects of smart sensing and pervasive 

health. Several works utilize wearable devices (including new types, i.e., smart glasses) and 

machine learning for human activity recognition. Several others focus on objective and 

subjective monitoring of mental health. Finally, there are papers proposing new applications, 

methodologies, and ICT solutions for pervasive health and improving the security and privacy 

in such systems. 
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ABSTRACT
This paper presents the part of the gait impairment measurement

algorithm, which consists exclusively of the walking detection

algorithm. The purpose of the optimized algorithm is to improve

the detection of walking. Today’s embedded devices (like wrist-

bands) have low-level interrupts that detect steps and, conse-

quently, walking. The problem is that these could be inaccurate

in some cases. For example, a person can swing with a hand

while sitting, and the device will detect steps. The importance of

walking detection is crucial for gait impairment measurements,

as gait data should only be collected when a person is walking

in a "normal" manner and not performing any other walking-

like activities. An algorithm to measure gait impairment will be

developed in the later stages of this study. We focused on improv-

ing the walking detection algorithm with statistical methods in

both time and frequency domains in contrast to computation-

ally expensive algorithms that use machine learning. The walk

detection algorithm has been optimized based on data collected

by a wristband with a 3-axis accelerometer sensor. With our

optimized algorithm, we got an average accuracy of 89.4%. We

can conclude that our proposed method works well for detecting

when a person is walking normally. The algorithm successfully

detects "not natural walking" scenarios when the person is sit-

ting and swinging their hand or walking with extreme hand

movements.

KEYWORDS
wristband, walking detection, FFT, periodogram, activity recog-

nition, hamming window

1 INTRODUCTION
Every year number of older adults fall and injure themselves. For

example, in Western Europe, in 2017 alone, 13840 per 100,000

older adults over the age of 70 are known to have fallen and

injured themselves to the extent of medical assistance [1]. To

prevent such phenomena, measurement and monitoring of gait

deterioration in the elderly must be developed. One part of the

such algorithm must consist of a walking detection algorithm

that detects whether a person is walking or not in a non-invasive

way.

Wristbands with various sensors (e.g., accelerometer, gyro-

scope) have proven to be an excellent technology for automatic

and non-invasive detection of daily activities. In this case, we can

use the acceleration vector data from the accelerometer sensor to

Permission to make digital or hard copies of part or all of this work for personal

or classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this

work must be honored. For all other uses, contact the owner/author(s).

Information Society 2022, 10–14 October 2022, Ljubljana, Slovenia
© 2022 Copyright held by the owner/author(s).

detect whether the person is walking or not. However, many stud-

ies have focused on using machine learning algorithms, which

provide high accuracy but are computationally expensive to im-

plement in embedded systems (wristbands).

We present to you a computationally inexpensive algorithm

for detecting whether a person is walking or not. Furthermore,

the algorithm can detect walking and other daily activities similar

to the walking pattern and can be used on a low-power wristband

system. In our case, the most crucial aspect of our gait detection

algorithm should be to detect as minimal cases as possible where

the algorithm predicts that the person is walking naturally. Still,

in the actual case, the person is performing other activities.

An algorithm to measure gait deterioration (our next step)

will help the elderly prevent falls. The algorithm will monitor

a person’s gait daily, and when a person’s gait deteriorates dra-

matically, it will notify caregivers of increased chances of falling.

Accordingly, caregivers can take the person to rehabilitative walk-

ing therapy or give them more care.

2 RELATEDWORK
Advances in the accuracy and accessibility of wearable sensing

technology (e.g., fitness bands and smartwatches) has allowed

researchers and practitioners to utilize different types of wearable

sensors to detect walking.

In [2] the authors explored the possibility of detecting activity

from a smartphone-based accelerometer sensor. They used smart-

phones placed in different positions(backpack, pocket, in hand)

to collect data when doing an activity (walking, fast walking,

slow walking, running). To reduce complexity, they computed

the magnitude of the 3-axis accelerometer. The magnitude vector

is then processed using time and frequency domain statistical

techniques. Finally, the statistical methods on the time-domain

measures are applied for state recognition, while the statistical

techniques on the frequency-domain features are implemented

for walking movement distinction.

In [3], they use a smartphone with a gyroscope to collect

data. They propose a new algorithm based on Fast Fourier Trans-

form (FFT) [4] to identify the walking activity of a user who

can perform different activities and hold the smartphone differ-

ently. The proposed algorithm (FFT) was able to achieve superior

overall performance compared to the other two best-performing

algorithms (Short Time Fourier Transform (STFT) and Standard

Deviation Threshold (STD TH)).

The authors in [5] propose an algorithm that classifies human

activity in real time based on data from an accelerometer attached

to the subject. The algorithm uses dynamic linear discriminant

analysis (LDA), which can dynamically update classifier matrices

without storing all training samples in memory. LDA is used to

find a transformation of extracted features that separate data dis-

tribution into different classes while minimizing the distribution

of data of the same class in the newly transformed space.
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Compared to the state-of-the-art algorithm, our paper aims to

combine the FFT and threshold algorithm from [2] and axis selec-

tion algorithm from [3] while adding an upper bound threshold

to detect exaggerated hand movements and excluding them from

false positives.

3 METHODOLOGY
The main goal of the research was to improve, or rather optimize,

the gait detection algorithm based on statistical methods and

frequency coefficients obtained from the measurements of the

Empatica E4 bracelet accelerometer. To achieve this, we had to

record data with the wristband while performing various activi-

ties and test the performance of our algorithm on the collected

data. The data was collected using the Empatica E4 wristband

[6]. The sampling frequency for the 3-axis accelerometer is 32

Hz. It has an 8-bit resolution and a default range of ± 2 g with

sensitive motion detection along three axes: x, y and z.

3.1 Data collection
An Empatica E4 bracelet was used for data collection and placed

on the subject’s left wrist. The wristband was connected to a

smartphone via Bluetooth and streamed real-time data that was

uploaded to the Empatica server.We have designed various routes

and defined actions on these routes, which the subjects should

carry out. Data was then collected from different individuals

who wore the bracelet and followed the planned route. Various

walking styles were performed on the designed paths, such as

normal walking, slow walking, fast walking, and walking with

random hand movements. Some actions involved sitting in a

chair and performing arm swings that are similar in motion to

arm swings if the subject were walking.

In [2], data was gathered from 7 individuals doing different

walking styles (slow walking, fast walking, normal walking).

They collected 27 samples. In our case, the data was collected

from 4 individuals shown in Table 1. We also collected a total of

27 samples.

Table 1: Table of participants

Participant Gender Age Disability
A Male 22 None

B Male 24 None

C Male 83 Difficulty walking

D Female 79 None

Figure 1 shows all three axes of raw accelerometer data col-

lected from the Empatica wristband. During an interval between

20 seconds and 70 seconds, the subject wearing the Empatica

walked in a straight line.

3.2 Algorithm
Our optimized algorithm combines aspects from two papers

[2][3]. From the first paper, we used the modified periodogram

thresholding algorithm to detect walking only when the mini-

mum required hand activity is reached in frequency ranges that

correspond to human walking activity. From the other paper, we

implemented this on the 3-axial accelerometer. For each time

window, we select and process only the data on an axis with the

most variance. Our contribution to the algorithm for walking

detection is a combination of the two, with added upper bound

Figure 1: Example of raw signal from accelerometer sensor

threshold to prevent false walk detection when a subject is swing-

ing a hand uncontrollably, shown in the main algorithm 2 on line

(18). This is more thoroughly described below.

First, we use the time windowing algorithm (Algorithm 1) to

process the data in a shorter time frame. Then, we need to divide

the data into time windows (W). We found empirically that it is

best if the data window length (𝑤𝑡 ) is 5 seconds with a 2.5-second

overlap (𝑜𝑡 ).

The time windows are then filtered (x, y, and z axes are filtered

separately) with a high-pass Butterworth filter to capture the sig-

nal proportionally (symmetrically) with respect to the time axis.

The general shape of the frequency response of a Butterworth

filter is defined as equation (1). Where 𝑓𝑐 is the cutoff frequency,

𝜖 is the passband gain, and 𝑛 is the order of the filter. We chose

the order of 𝑛 to be 5. We chose it heuristically. For our example,

the cutoff frequency was set to 1 Hz.

𝐻 (𝑓 ) = 1√︂
1 + 𝜖2

(
𝑓

𝑓𝑐

)
2𝑛

(1)

In the next step, we detect which of the three axes is the most

sensitive for each time window. This step is accomplished by cal-

culating each filtered axis’s standard deviation (STD) separately

and selecting the one axis with the highest STD value.

Afterward, we compute modified periodogram coefficients

from the most sensitive axis for each window. To calculate the

modified periodogram in the algorithm 2 we multiplied signal

windows with Hamming window, which is defined as (2). The

Hamming window is an extension of the Hamming window and

is a semi-cosine bell-shaped curve.

𝑤 (𝑛) = 0.54 − 0.46𝑐𝑜𝑠
(
2𝜋𝑛

𝑁 − 1

)
, 0 ≤ 𝑛 ≤ 𝑀 − 1 (2)

Where N represents total length of the window.

For each time window, two main conditions had to be met for

it to be classified as "walking."

Modified periodogram coefficients are computed using equa-

tion (3). Time windows that met the first condition (4), need to

have computed modified periodogram coefficients that are on

the interval 0.6 to 2 Hz (𝑆𝑥𝑥 (𝑓𝑖 ) where 𝑓𝑖 represents all the fre-

quencies inside the interval) and had higher mean than the mean

of coefficients in the interval outside 0.6 to 2 Hz (𝑆𝑥𝑥 (𝑓𝑜 ) where
𝑓𝑜 represents all the frequencies outside the interval).
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𝑆𝑥𝑥 (𝑓 ) = |𝐹 (𝑓 ) |2 (3)

Where F(f) is output from FFT at desired frequency f.

𝑆𝑥𝑥 (𝑓𝑖 ) > 𝑆𝑥𝑥 (𝑓𝑜 ) (4)

The second condition (5) that had to be met for the time win-

dow is that the STD of the vector norm of the unfiltered signal

must be between 0.3 g and 0.7 g. The lower limit (0.3 g) ensures

that walking is not falsely detected when the subject is not mov-

ing. The higher limit (0.7 g) prevents walking detection when

subjects move their arms uncontrollably. Both limits were de-

termined empirically based on our collected data set. The norm

is calculated using equation (6) where x, y, and z are the time-

windowed accelerometer signal vectors, each representing an

axis. "i" means the same index on all three axes, ranging from

1 to the length of the time window (this is calculated from the

raw signal using the (7) where N is a number of samples in a

time window). Time windows that satisfy both conditions are

classified as "walking"; all other window cases are classified as

"not walking."

0.3 < 𝜎𝑛𝑜𝑟𝑚 > 0.7 (5)

𝑛𝑜𝑟𝑚𝑖 =

√︃
𝑥2
𝑖
+ 𝑦2

𝑖
+ 𝑧2

𝑖
(6)

𝜎𝑛𝑜𝑟𝑚 =

√︄∑𝑁
𝑖=1 (𝑛𝑜𝑟𝑚𝑖 − 𝑛𝑜𝑟𝑚)2

𝑁
(7)

Algorithm 1 for windowing

Require: (𝑎𝑐𝑐𝑥 , 𝑎𝑐𝑐𝑦, 𝑎𝑐𝑐𝑧),𝑤𝑡 , 𝑜𝑡 ⊲ 𝑜𝑡 is the overlap𝑤𝑡 =

length of the window

Ensure: (𝑊𝑥 ,𝑊𝑦,𝑊𝑧)
𝑊 ← []
𝑠𝑡 ← 0 ⊲ 𝑠𝑡 = start index of windowl

𝑒𝑡 ← 𝑠𝑡 +𝑤𝑡 ⊲ 𝑒𝑡 = end index of window

for all (𝑎𝑐𝑐𝑥 , 𝑎𝑐𝑐𝑦, 𝑎𝑐𝑐𝑧) do
while 𝑠𝑡 ≤ 𝑁 do ⊲ N is the number of samples in a

window, i represents index of current sample in a loop

𝑎𝑐𝑐′
𝑖
← 𝑎𝑐𝑐𝑖 [𝑠𝑡 : 𝑒𝑡 ]

𝑊 ←𝑊 + [𝑎𝑐𝑐′
𝑖
]

𝑠𝑡 ← 𝑠𝑡 + 𝑜𝑡
𝑒𝑡 ← 𝑒𝑡 + 𝑜𝑡

end while
end for

Algorithm 2 for detection of walking

function Stationary(𝑑)

𝑛2 ← 𝑛𝑜𝑟𝑚(𝑑)
𝑚 ← 𝑛2 [:] −𝑚𝑒𝑎𝑛(𝑛2)
𝑠𝑑 ← 𝑠𝑡𝑑 (𝑚)

end function
Require: 𝑊
Ensure: 𝑏𝑜𝑜𝑙𝑒𝑎𝑛[]
for all (𝑊𝑖 ) do ⊲ i represents index of current window in a

loop

if 𝑙𝑒𝑛𝑔𝑡ℎ(𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 (𝑊𝑖 )) ≥ 0 then
𝑊𝑥 ← 𝐵𝑢𝑡𝑡𝑒𝑟𝑤𝑜𝑟𝑡ℎ𝐹𝑖𝑙𝑡𝑒𝑟 (𝑊𝑖 (𝑥))
𝑊𝑦 ← 𝐵𝑢𝑡𝑡𝑒𝑟𝑤𝑜𝑟𝑡ℎ𝐹𝑖𝑙𝑡𝑒𝑟 (𝑊𝑖 (𝑦))
𝑊𝑧 ← 𝐵𝑢𝑡𝑡𝑒𝑟𝑤𝑜𝑟𝑡ℎ𝐹𝑖𝑙𝑡𝑒𝑟 (𝑊𝑖 (𝑧))
𝑛𝑚𝑒𝑎𝑛𝑥2 ← 𝑎𝑣𝑔(𝑛𝑜𝑟𝑚(𝑊𝑥 ))
𝑛𝑚𝑒𝑎𝑛𝑦2 ← 𝑎𝑣𝑔(2𝑛𝑜𝑟𝑚(𝑊𝑦))
𝑛𝑚𝑒𝑎𝑛𝑧2 ← 𝑎𝑣𝑔(2𝑛𝑜𝑟𝑚(𝑊𝑧))
𝑎𝑚 ← 𝑎𝑟𝑔𝑚𝑎𝑥{𝑛𝑚𝑒𝑎𝑛𝑥2, 𝑛𝑚𝑒𝑎𝑛𝑦2, 𝑛𝑚𝑒𝑎𝑛𝑧2}
𝑝𝑔← 𝑝𝑒𝑟𝑖𝑜𝑑𝑜𝑔𝑟𝑎𝑚(𝑎𝑚,ℎ𝑎𝑚𝑚𝑖𝑛𝑔) ⊲ hamming is the

windowing function

if (𝑚𝑎𝑥 (𝑎𝑚) − 𝑚𝑖𝑛(𝑎𝑚) > 0.3) and 𝑝𝑔(𝑓 >

0.6 and 𝑓 < 2) then
𝑏𝑜𝑜𝑙𝑒𝑎𝑛 ← 𝑏𝑜𝑜𝑙𝑒𝑎𝑛 + [1]

else
𝑏𝑜𝑜𝑙𝑒𝑎𝑛 ← 𝑏𝑜𝑜𝑙𝑒𝑎𝑛 + [0]

end if
end if

end for

4 RESULTS
We ran the algorithm on different recordings taken with the Em-

patica wristband. Slow and fast straight walking, stair climbing,

and sitting involving arm swing.

Figure 2 shows a dot plot where zero (on the y-axis) represents

"no walking," and one represents "walking." The x-axis represents

time (in seconds). Dots on the x-axis are linearly spaced by 2.5

seconds. During the first 8 seconds, the subject was standing, so

for this part of the signal, the algorithm correctly classified it as

"not walking." After 8 seconds, the subject started to walk in a

straight line, and the algorithm correctly detected this activity as

"walking." For our example, we can confirm that the algorithm

works correctly under normal walking conditions.

Figure 2: Proposed algorithm used on straight walking
activity, recorded Empatica E4 wristband
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Table 2: Table of activities and their accuracy

Activity Detected as "Walking" Detected as "Not walking" Accuracy

W
a
l
k
i
n
g

Walking and swinging hand 47.5s 7.5s 86.4%

Slow walking 52.5s 2.5s 95.5%

Stair climbing 17.5s 37.5s 68%

N
o
t
W
a
l
k
i
n
g Fast walking 5s 52s 91.2%

Standing 7.5s 47.5s 86.4%

Sitting 0s 55s 100%

Sitting and swinging hand 2.5s 52.5s 95.5%

Walking and uncontrollably moving hand 0s 55s 100%

Figure 3 shows an example of a recordingwhere several human

activities are present, such as standing, sitting on a chair and

performing random hand movements, walking and performing

hand movements, and walking and performing exaggerated hand

movements. It can be seen that the algorithm had difficulty in gait

classification when high-amplitude armmovements were present

during the subject’s gait. This is because gait characteristics are

lost in the noise of high-amplitude hand movements. For our

purposes, the issue is not critical because the future end goal is to

measure the subjects’ gait impairment, so there is no problem in

discarding the parts of the signal where the person does not walk

in a "natural" way. However, we can also observe that there was

deviationwhen the subject sat down and started swinging his arm

(One instance at the 42nd second where the algorithm should

predict "not walking" but instead, it predicted "walking"). On

Figure 4 at about 78th second, we can observe that the algorithm

detected sitting as if it were walking.

Figure 3: Proposed algorithm used on multiple activities,
recorded on Empatica E4 wristband

We require that we have the least amount of false positives in

our data set because we want to detect only the scenarios where

a person is walking the most naturally. This is a typical binary

classification problem, where the final results are shown in Table

2. The first three activities (walking and swinging hand, slow

walking...) are considered natural walking and should be detected

as walking. The next 6 (Fast walking, standing, sitting, sitting

and swinging hand, walking and uncontrollably moving hand)

activities should be considered as "not walking" because they are

less optimal for feature collection for the algorithm that will be

implemented in the next stages of this study. The study we are

conducting is primarily meant for the elderly, so we categorized

the "fast walking" scenario as not walking, as it is not common for

the elderly to walk fast. In the stairs climbing case, the algorithm

did not perform very well, but that is not relevant in our case.

More importantly, in the last 6 cases algorithm performs well in

detecting true negatives.

Figure 4: Proposed algorithm used when sitting and swing-
ing hand, recorded on Empatica E4 wristband

5 CONCLUSION
In the related work, we described the state-of-the-art algorithms

used in today’s many applications. For this research, we selected

two algorithms from many of them and expanded (optimized)

the work for our purposes. The results of our algorithm were

able to detect when a person was walking normally, slowly, and

quickly. In addition, the algorithm correctly detected cases when

a person does not walk while sitting but swings his arm.

To measure gait impairment, we only want to use time win-

dows of the signal where we are certain that the person is walking

and that there are no additional "unnecessary" hand movements.

In the future, we will further improve the algorithm so that the

deterioration of walking, our final goal, can be measured cor-

rectly.
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ABSTRACT 

In the last decade, smartphones have seen a serious growth 

in the processing power. Coupled with greater affordability 

this has led to a worldwide smartphone ubiquity. Alongside 

the advances in processing and battery technology, there are 

great advances in sensor technology as well, and every 

smartphone today comes equipped with multiple sensors: 

accelerometer, gyroscope, magnetometer etc. The sensory 

data is already being used in a variety of applications, among 

which several focus on the human activity recognition. In this 

paper, we propose a smartphone Android integration of a 

machine learning pipeline for recognizing human activities. 

The proposed approach uses the 3-axis accelerometer in the 

smartphone, processes the data in real time, and then a 

machine learning model recognizes the user's activities in 

real time: walking, running, jumping, cycling and standing 

still. The proposed Recurrent Neural Network model and its 

machine learning pipeline are developed on a publicly open 

activity dataset, which are then implemented into the 

Android application and once again validated on a dataset 

recorded with a smartphone itself. 

KEYWORDS 

Human activity recognition, machine learning, Android 

integration, Tensorflow Light, recurrent neural network, 

accelerometer, magnitude. 

1 INTRODUCTION 

Human Activity Recognition (HAR) is the process of 

examining data from one or multiple sensors and 

determining which (if any) activity is being performed. The 

sensors are traditionally placed on key points on the human 

body and contain composite data (accelerometer, gyroscope, 

magnetometer data, etc.). Advances in sensor technology 

have made sensors more compact and precise over the years, 

but most importantly more affordable. Today these sensors 

can be found in the standard package of any smartphone.  

The purpose of this paper is to leverage these smartphone 

sensors to perform HAR in real time, by utilizing an Android 

application which continuously reads its own sensor data, 

instead of using the traditional dedicated wearable sensors. 

The premise is that the smartphone sensors have reached the 

required quality to be comparable to the wearable sensors in 

accuracy [1]. The benefit of this approach is that it is much 

more convenient to use smartphone sensors for the common 

user, as smartphones have become ubiquitous. 

Human activity recognition is a popular topic, which has 

been worked on extensively in the recent years [2]. Practical 

applications for HAR are mainly in improvement of the 

quality of life and medicine. A great example of HAR models 

being used in medicine can be found in paper [3], which 

focuses on fall detection mainly for the elderly population. 

Using dedicated wearable sensors to recognize activities 

is the most common approach. Smartwatch is usually 

equipped with the same sensors as the smartphones and has 

a much more fixed position on the body (tightly around the 

wrist). The drawback is that the arms are more prone to 

random movement which introduces noise into the system 

and makes HAR more difficult. A detailed analysis on these 

issues can be found in paper [4].  

Using data from smartphone sensors to train models for 

HAR has also been explored recently in [5], where a deep 

neural network is trained on the data from multiple sensors 

on the smartphone. In our study we go a step further and 

analyze and compare a simplified subset of the sensor data 

(only accelerometer magnitude) - which allows us to have a 

model that will work regardless of the smartphone 

orientation and to have a simple yet effective method of 

integrating a model into an Android application. 

We propose an Android integration of a Machine Learning 

(ML) pipeline for recognizing human activities in real time on 

a smartphone. In particular, the proposed approach uses the 

3-axis accelerometer in the smartphone, processes its data in 

real time, and then the ML model recognizes the user's 

activities: walking, running, jumping, cycling and standing 

still. The proposed Recurrent Neural Network (RNN) model 

and its machine learning pipeline are developed on a publicly 

open activity dataset, then implemented into an Android 

application, which finally, is once again evaluated on a 

dataset recorded with a smartphone itself. Additionally, as 

part of this study we release an Android application [6], 

which can be used by other researchers to easily gather data 

with a smartphone and as a practical demonstration of how 

to integrate an ML model with an Android application and 

use the built-in accelerometer data. 

2 DATASET 

The models were trained on a publicly available dataset 

which was originally used to evaluate the impact of sensor 

placement in activity recognition [7]. The dataset consists of 
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wearable sensor readings from 17 healthy subjects which 

perform any of 33 different activities. There are a total of 9 

wearables placed on the body: two on each arm and leg, and 

one on the back. Each wearable sensor reads 13 values with 

a frequency of 50Hz: three for acceleration, three for 

rotation, three for magnet flux vector and four for orientation 

in quaternion format. This brings the total amount of 

readings to 117 per frame (9 wearable sensors with 13 

values each). Out of all these measurements only six are used: 

the 3 accelerometer values from each of the two upper leg 

sensors (left and right). These sensors are chosen as they are 

approximately at the location where a smartphone would be 

(in a side pocket). Additionally, the magnitude of each sensor 

is added as an additional feature, calculated as: 

 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 =  √𝑎𝑐𝑐𝑥
2 + 𝑎𝑐𝑐𝑦

2 + 𝑎𝑐𝑐𝑧
2 

( 1 ) 

 

    Due to the position of the sensors, recognizing motion 

mainly expressed with the upper torso and arms is 

impossible, so the dataset is truncated to only activities that 

are dependent on the legs: walking, running, jumping, cycling 

and standing still. 

3 METHODOLOGY 

In order to adapt the dataset to fit the needs of this 

application, certain preprocessing and feature extraction is 

performed, described in detail in the following subsections. 

3.1 Preprocessing and segmentation 

The dataset contains a disproportionate number of readings 

for standing still in comparison to all other activities. To 

correct this a random under-sampling is performed (only 5% 

of the standing still data is used). Additionally, similar 

activities are grouped together, namely jogging and running 

are grouped together as running, and jumping upwards, 

jumping front and back, jumping side to side, and jump rope 

are grouped as jumping. The resulting distribution of data is 

illustrated on Figure 1, with running having the most amount 

of data (1760s), and cycling having the least (860s). 

 
Figure 1 Activity distribution after selection 

 

Once selection has been performed, the data is grouped 

into 3-second windows. Since the data is collected at a 

frequency of 50Hz, each window contains 150 records. 

3.2 Feature extraction 

After the data has been split into 3-second windows, five 

statistical features are calculated per window. The first two 

are the mean and the standard deviation of the 150 values 

in the window. The three additional statistical features are:  

 Mean first-order difference: average difference 

between consecutive values in the window. Computed 

by first creating a list of first-order differences between 

consecutive values in the window and then calculating 

the mean of this list. 

 Mean second-order difference: average difference 

between consecutive elements in the list of first-order 

differences. 

 Min-max difference: difference between the minimum 

and maximum value in the window. 

The feature extraction is performed on every sensor (x, y, 

z axis and magnitude on both accelerometers, left and right), 

which gives a total of 40 features. The features are then 

separated into three datasets: left accelerometer, right 

accelerometer with 20 features each, and combined 

accelerometers which contains the data from both the left 

accelerometer and right accelerometer datasets, by matching 

the respective features (e.g., x-axis on the left accelerometer 

and x-axis on the right accelerometer are treated as the same 

feature: x-axis), thus the combined accelerometers dataset 

also contains 20 features, but it is twice as long. 

To compare the effectiveness of a simplified version of the 

model that is orientation independent, a second version of 

the dataset is created. This dataset uses only the features 

extracted from the magnitudes of both accelerometers (5 

features each). It is further split into three parts: magnitude-

only left, magnitude-only right and magnitude-only combined, 

each containing five features. 

3.3 ML Models 

Multiple ML models were evaluated, such as K-NN, Linear 

SVM, Random Forest, Naï ve Bayes and Neural Networks 

(DNN and RNN).  

Ultimately the RNN model had the best performance. A 

simple RNN was chosen as the ML model for this application. 

The model is created using Keras and contains two RNN 

layers with 512 nodes each and tanh activation function. The 

final decision layer is a Dense layer with 5 nodes and a 

softmax activation function. It is trained for 100 epochs with 

a sparse categorical cross entropy activation function. 

4 EXPERIMENTS 

With the dataset prepared, the following experiments 

were conducted: 

 Accuracy comparison between magnitude-only and full-

featured versions of the dataset. 

 Evaluation of models trained on data from the left 

accelerometer and evaluated on data from the right, and 

vice-versa. 

4.1 Evaluation and metrics 

The models were evaluated using K-fold Cross-

Validation, where K is equal to the number of subjects, and 

in each iteration a different subject’s data is used as the 

validation set. Splitting the data this way ensures that the test 
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data and train data do not both contain windows from the 

same subject (as consecutive windows from the same subject 

are very similar). Instead, when using the data from a 

separate subject as a validation set, a good estimate can be 

made of how the model will behave when a never seen before 

person’s data needs to be evaluated. 

In every iteration of the K-fold Cross-Validation a 

confusion matrix is generated from the predicted values. 

From there the precision and recall are calculated for every 

activity as well as the overall accuracy. These metrics are 

compiled for every iteration and the average values across all 

iterations form the overall evaluation of the model. 

4.2 Results 

Initially nine models were considered and evaluated on 

both the full-featured dataset and the magnitude-only 

dataset (for combined accelerometers). The results are 

illustrated on Figure 2, sorted by accuracy. 

 
Figure 2 Accuracy comparison of all inspected ML models 

 

The accuracy of the models with full features was 

expectedly higher than the magnitude-only version, with the 

drop in accuracy being on average 7% (K-NN being the 

exception with an increase in accuracy of 2%). The RNN had 

the highest accuracy in both cases, with 98.8% on the full-

featured dataset and 95.8% on the magnitude-only dataset. 

Therefore, the following results focus on the RNN model.  

The comparison in accuracy between the full-featured 

and magnitude-only versions was made on all three datasets 

(left, right and combined). The results for the RNN are 

displayed on Figure 3. 

 
Figure 3 Comparing full-featured and magnitude-only datasets 

 

The average drop in accuracy for the RNN was 3% which is 

well within acceptable boundaries. As a side note, the right 

side in general seems to show slightly weaker results, 

however at most this is 1.5% (when comparing the left 

simplified and right simplified sets) which could be due to 

random noise. 

In order to evaluate if the model takes in a bias from the 

side on which it is trained or if the sides carry an intrinsic 

difference, the model was trained on one side and evaluated 

on the other. This was done twice, trained on left and 

evaluated on right, and trained on right and evaluated on left. 

The results are displayed on Figure 4, along with a control set 

which was trained and evaluated on the same side. 

 
Figure 4 Comparison between same and opposite side evaluation 

 

The accuracy differences are within 2% which is negligible, 

and in the case of the right accelerometer dataset, evaluating 

on the left actually increased the overall accuracy. This is due 

to the slight difference in quality between the left and right 

sides, and not due to switching sides when evaluating. 

These results suggest that there is no significant side bias 

in the models and thus the activity recognition will work 

regardless of on which side the smartphone is located. This 

in addition to the simplified model’s independence from 

orientation make it the ideal choice for integrating with a 

smartphone. 

5 ANDROID INTEGRATION 

In order to integrate with an Android smartphone device, 

the magnitude-only model with combined accelerometers 

was converted into a tflite format using the Tensorflow Lite 

library, which is the most commonly used library for artificial 

intelligence in Android. The converted models are then 

added in the file structure of an Android application which 

reads them into memory when it starts up and uses them in 

real time to recognize activities. 

All Android devices come equipped with accelerometers 

(along with many other sensors) and they can be accessed 

with the built-in class SensorManager, which is part of the 

default library: android.hardware. The data read by the 

SensorManager is on a by-axis basis and in the standard unit 

of m/s2. The orientation of the x, y and z axis is illustrated in 

Figure 5. 

The frequency with which the sensor records data is 

adjustable, with the tradeoff being higher quality data vs 

lower battery consumption. In our implementation, the 

sensor delay is set to 20ms between reads (50Hz frequency). 

Since there is no way to predict which way the 

smartphone will be oriented in the pocket, the magnitude of 
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the accelerometer is the only thing that is used in the feature 

calculation. The magnitude readings are kept in memory 

until 150 samples are accumulated (exactly 3s), which is the 

size of the window used in the training of the models. Then 

the same statistical features are calculated on the collected 

window: mean, std. deviation, mean first-order and second-

order differences, min-max difference. These values are then 

placed in a tensor and it is sent as the input into the model, 

which is also kept in memory (in the form of an object). The 

output of the model is also a tensor (the output layer which 

has a softmax activation function), which is then converted 

into a single result (the node with the highest value) and is 

displayed on screen.  

 
Figure 5 Accelerometer axis orientation in smartphones 

 

Since 150 samples need to be accumulated before the 

features are calculated and the model is called to make the 

prediction, there is the side effect that the displayed value on 

screen is 3s behind (in other words the current activity the 

user is doing will be displayed in 3s). All the data read by the 

accelerometer along with the prediction and a timestamp 

and is kept in memory (a single entry will contain all the 

calculated features from the 3-second window, the model 

prediction and a timestamp). The user can choose to export 

this data to csv and use it as a dataset.  

The model was evaluated on a practically collected 

dataset with a Samsung Galaxy s20 smartphone (5 minutes 

of each activity). The predicted value was compared to the 

actual activity by cross-referencing the timestamps (the 

activities were performed at specific times), and a confusion 

matrix was created, from which the precision, recall and f1 

score, as well as overall accuracy, was calculated. The results 

are displayed on Figure 6. 

 

 
Figure 6 Precision, recall and f1 score results on the practically 

collected dataset on a Galaxy s20 smartphone 

The overall accuracy of the model was 90.2%, which is a 

noticeable drop from the 95.8% evaluated from the original 

training dataset. This is expected, as there is a certain amount 

of noise introduced to the system from the fact that the 

smartphone is not fixed in place as rigidly as the wearables. 

6 CONCLUSION 

This paper presented a practical way of training and 

implementing a HAR model in an Android application, along 

with solving the practical issues of reading smartphone 

accelerometer data such as unpredictable orientation and 

whether it is kept on the left or right side. 

To determine whether there is an intrinsic difference 

between the left and right side or whether the models 

develop a side bias, an experiment was conducted where 

models were evaluated on the opposite side of where they 

were trained, and it was determined that no such bias existed.  

To gain independence from orientation, a simplified 

dataset was created which used only the magnitude readings. 

Training on this dataset resulted in an expected drop in 

accuracy, but within an acceptable margin. 

An RNN was trained on the magnitude-only dataset and 

integrated into an Android application which reads the 

accelerometer data and calculates the features in real time. 

The calculated features are used as an input for the model, 

which then outputs the predicted activity, and is 

subsequently shown on screen. 

The sensors in the used smartphone did prove to be of a 

comparable quality to the wearable sensors as the model 

successfully recognized activities recorded with smartphone 

sensors with a solid accuracy of 90.2%, even though it was 

trained on a dataset from wearable sensors. 
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ABSTRACT 
With the advent of interactive virtual reality (VR) applications, 
the interest in tools that allow users to engage with VR 
environments unobtrusively and intuitively is growing. One such 
interfacing tool for VR applications is speech recognition, which 
can contribute to enhanced human-computer interaction. In this 
study, we explore the usage of a novel VR facial mask equipped 
with seven surface electromyography (sEMG) sensors to 
recognize if the user is speaking or not using machine learning. 
We collected speaking and non-speaking data from 30 
participants. The machine learning pipeline that was developed 
included data preprocessing, de-noising, filtering, segmentation, 
feature engineering, and training of a binary classification model. 
The experimental results indicate that the mask can be used to 
recognize the speaking activity. On the test data of five unseen 
participants, the best-performing model achieved an accuracy of 
89% and an F1-macro score of 91. Additionally, by removing 
each sensor from the dataset, we analyzed the individual 
influence each sensor has on the models' outcomes. We did not 
observe a significant drop in the accuracy of the models, 
indicating that using the mask speaking can be detected even if 
some of the sensors are not used. 

KEYWORDS 
speaking recognition, machine learning, classification, wearable 
sensors, surface EMG, facial muscles. 

1 INTRODUCTION 
Virtual reality (VR) is an emerging technology that has 

introduced immersive user experience in virtual environments 
and is expected to revolutionize the way we interact with the 
digital world. VR applications have already been widely used in 
many different disciplines, ranging from research and training 
facilities to entertainment and healthcare. With the emergence of 
interactive VR applications, there is an increasing interest in new 
immersive tools that enable users to interact with VR 
surroundings in an unobtrusive and intuitive manner. One such 
interfacing tool for VR applications is speech recognition. Its 
incorporation with VR provides users with increased flexibility 
for interfacing with VR environments and can contribute to 
improved human-computer interaction. 

In recent years, surface electromyography (sEMG)-based 
interfaces have been utilized for unobtrusive interaction in a VR 
environment. sEMG is used to measure muscle contractions 
using sensors applied directly on the skin by detecting changes 
in surface voltages on the skin when muscle activation occurs. In 

part due to its ability to be applied non-invasively, facial sEMG 
has been used to detect the activation of facial muscles that are 
activated during speaking. However, most sEMG sensors used in 
conventional speaking recognition systems have been attached 
around the user's lips and neck. This poses a number of practical 
issues, including the need for extra wearable devices in addition 
to the VR headset, limited facial muscle movement, and user 
discomfort. 

To overcome these issues, in this study we explore the usage 
of a novel facial mask equipped with sEMG sensors. The mask 
is incorporated into a VR headset to recognize if the user is 
speaking or not. Our approach is based on signal processing and 
machine learning (ML), which are used to develop a binary 
classification model. 

2 RELATED WORK 
The first studies with sEMG sensors were performed by 

Piper[1]. Since then, researchers have been widely using sEMG 
sensors to measure the electrical signal that emanates from 
contracting muscles. The usefulness of the sEMG signal for 
measuring human performance was demonstrated by Inman [2] 
who investigated the technical aspects of human locomotion. By 
the early 1960s, the improvements in signal quality and 
convenience made the sEMG sensors a common tool in clinical 
and research laboratories. Despite their popularity, current 
recording methods can be problematic in maintaining signal 
fidelity when vigorous or long-duration activities are monitored 
[4] [3] . 

Speech recognition by using sEMG was first used in the 80s 
[4] [6] . The results in these studies were preliminary but 
important for the further progress of the field. Jorgensen and 
Binsted [6] showed that it is possible to recognize speaking even 
if the words are spoken silently and/or without any actual sounds. 
Jou et al. [7]  showed that it is possible to recognize not just the 
words but also the phonemes to a certain degree. Additional 
works include direct synthesis of speech via sEMG – which aids 
people who have problems with their vocal cords or airways [8] 
[9] . 

Compared to the previous studies, we differ in the sense that 
we are using a novel facial mask – emteqPROtm, which is 
equipped with seven sEMG sensors. The sEMG sensors may be 
more error-prone compared to the intramuscular EMG sensors, 
and thus here we study their utility. Additionally, the location of 
our sEMG sensors makes the task of speaking recognition more 
challenging because the facial mask is placed on the upper part 
of the face (as part of the VR headset) and not the mouth and the 
lips – which would be more convenient for speech recognition. 
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3 DATASET 
The data collection protocol included healthy participants that 

were asked to read a pre-defined text (news article). Additionally, 
we recorded a segment where the participants were sitting still, 
i.e., we recorded a baseline session with a neutral face. This data 
was recorded while the participants were watching a neutral 
video, without moving their facial muscles or speaking.  A total 
of 30 participants were recorded, of which 18 were male and 12 
were female, with a mean age between 19 and 25 years. The 
native language of all the participants was Macedonian. 

During the data collection protocol, we were using the 
emteqPROtm mask [10] [11]  to record sEMG sensor data. The 
mask has seven EMG sensors (Figure 1): two frontalis sensors (6 
and 0 in Figure 1) used to monitor eyebrow movement; two 
orbicularis sensors (4 and 2 in Figure 1) used to monitor eye 
movements; two zygomaticus sensors (5 and 1 in Figure 1) used 
to monitor mouth and cheek movements; and one corrugator 
sensor (3 in Figure 1) used to monitor forehead movements. 

  

 

Figure 1: emteqPRO face mask with all 7 EMG sensors 

4 DATA PREPROCESSING AND 
MODELING   

The sEMG data were continuously recorded at a fixed rate of 
1000 Hz. These data underwent a data preparation process, which 
included data filtering, segmentation, and feature engineering. 
To improve the quality of the sensor data, we performed signal 
de-noising and filtering. The EMG signals were initially filtered 
with a Hampel filter to eliminate sudden peaks in the signals that 
emerge as a result of quick movements. Additionally, we also 
applied a frequency-based filtering method based on spectrum 
interpolation [12]  to reduce the noise caused by electromagnetic 
interference. [12] A sliding window technique was utilized for 
data segmentation. Specifically, the data were segmented into 
windows of size of 0.5 seconds with 0.4 seconds overlap (0.1 
seconds slide). Finally, for each sEMG channel, we extracted 34 
features, including various amplitude-based features, amplitude 
derivatives, auto-regressive coefficients, frequency-based 

features, and statistical features. The feature extraction procedure 
resulted in a total of 238 features.  
The extracted features were used as input to four classification 
algorithms: (i) K- Nearest Neighbors [13]  - a simple statistical 
algorithm where a datapoint is assigned a class according to the 
most numerous class of its k nearest neighbors; (ii) Support 
Vector Machine Classifier (SVM) [14] – an algorithm that works 
along the principle of finding a hyperplane in N-dimensional 
space to separate two classes of data points; (iii) Random Forest 
[15]  - an ensemble learning method that trains N decision trees 
using random subsets of data and features and determines the 
instance’s class by majority voting among the trained decision 
trees; and (iv) Extreme Gradient Boosting [16] - a gradient 
boosting algorithm which trains decision tree models 
sequentially, and each subsequent model strives to correct the 
errors of its predecessors. 

5 EXPERIMENTS 

5.1 Evaluation Setup 

The recorded data was split into training (20 of the 
participants), validation (5 of the participants) and test datasets 
(5 of the participants). The train dataset was used to train the 
models, the validation was used to optimize hyperparameters, 
and the test dataset was used to report the accuracy. The 
evaluation metrics we used to test the performance of our models 
were accuracy and F1 score.  

Additionally, the experiments were performed so that the 
training validation and test subsets do not have overlapping 
participants - i.e., each participant's data is found only in one of 
the three subsets. This is done so that we replicate a scenario 
where the model is used in practice on participants that are not in 
the training dataset.  

5.2 Default Hyperparameters Results 

Figure 2 presents the results (accuracy and F1-score) 
achieved by each of the algorithms with their default 
hyperparameters. We additionally included the Dummy 
classifier as a reference (which predicts the majority class). The 
results show significant improvement by all the algorithms 
compared to the Dummy classifier. The Random Forest and the 
SVM achieved similar results, while the XGBoost classifier 
achieved the best results overall (87% accuracy and 89% F1-
score). Apart from this, this classifier also scaled efficiently with 
the size of the datasets, as it was able to quickly and efficiently 
create and train models. This was also beneficial for the 
hyperparameter optimization – explained in the next subsection. 
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Figure 2: Algorithm comparison (accuracy and F1-score) 
using default hyperparameters 

5.3 Optimized Hyperparameters Results 

In the next step, we performed hyperparameter optimization. 
This process involves iterative changes of certain parameters of 
a classifier. During this process, an interval for every 
hyperparameter is defined, and afterward, each parameter is 
iteratively updated, and the performance of the models is 
monitored. During this step, all 238 features of the datasets were 
used, and a large number of numerical and other parameters 
(such as kernel for SVM, booster for XGB, etc.) were tuned. 

Figure 3 presents the results (accuracy and F1-score) 
achieved by each of the algorithms after the hyperparameter 
optimization. The results show slight improvement for the KNN, 
SVM, and XGBoost algorithms, the latest one achieving 89% 
accuracy and 91% F1-score – which was the best score that we 
achieved on this dataset. 

 

 

Figure 3: Algorithm comparison (accuracy and F1-score) 
using optimized hyperparameters 

5.4 Continuous Recognition Results 

Figure 4 illustrates the continuous recognition results for the 
five subjects from the test set achieved by the best-performing 
XGBoost classifier. A comparison was made between the true 
and the predicted class on a time scale, i.e., with a blue line, the 
true classes are presented (1 represents speaking, 0 represents not 
speaking). Additionally, the orange color presents the speaking 
predictions by the model. Each subject’s data is separated with 
black dashed lines in the figure. The results show that a large 
portion of the error is down to the baseline sessions of the last 
two subjects in the test dataset, marked with red circles. In a large 

portion of the baseline sessions, the model is falsely predicting 
speaking activity. We speculate that the reason might be that 
these two subjects were moving their head during the baseline 
session, which may have caused the sensors to shift from their 
original position and deteriorate their contact with the skin.  
 

 

Figure 4: Continuous recognition results for the XGBoost 
algorithm. The blue line represents true classes (1 – speaking, 
0 – not speaking), and the orange line represents the 
predictions (1 – speaking) 

5.5 Sensor Analysis Results 

We additionally analyzed the results achieved by the models 
if a certain sensor is missing. This way, we were able to check 
the importance of each sensor for the given task. Knowing the 
positions of the sensors on the face, we wanted to learn how the 
data would change if we were to drop data from a certain sensor 
while keeping the rest.  

The results are shown in Figure 5, which in general, show that 
the drop in accuracy and F1 score is not significant for all the 
sensors. The accuracy drops from 87% to 85% at most. A more 
detailed analysis shows that the sensors placed on left and right 
orbicularis, corrugator, and left frontalis have the most impact on 
accuracy, i.e., the accuracy drops the most when one of these 
sensors is missing. One of the reasons for this is that while the 
participants were speaking, they were actually reading – which 
means they activated their eyes which is recorded by the 
orbicularis muscles. This analysis shows us that certain muscles 
activate more while speaking compared to others, so that is why 
the model itself gains or loses accuracy more, depending on 
which sensor is dropped. 

 

 

Figure 5: Sensor analysis showing the performance when a 
particular sensor is missing. 

6 CONCLUSION 
In this work, we presented a ML approach for speaking 

recognition using facial sEMG sensors integrated into a VR 
headset. The dataset was collected with 30 healthy participants 
while reading a news article and watching videos. The results 
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show that the best performing model is XGBoost, which 
achieved 89% accuracy. Additionally, the error analysis per 
participant showed that most of the misclassifications were 
incorrect speaking predictions in the baseline (non-speaking) 
sessions of two participants. We speculate that this is caused by 
the head movement of the participants and we plan to tackle this 
using the IMU sensor on the emteqPROtm mask. 

An additional problem was that while the participants were 
reading, they were making small breaks, which were 
automatically labeled as speaking – but in fact were not speaking. 
This labeling problem will be tackled in future by using audio to 
exactly label the speaking segments. 

Finally, we plan to implement person-specific normalization 
on the EMG data. This is an important step given that different 
participants have different facial muscles, and even more, those 
muscles are activated differently while doing the same facial 
expressions or speaking. 
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ABSTRACT
Parkinson’s disease is the second most common neurodegenera-
tive disease worldwide. Symptoms tend to fluctuate during the
day and through disease progression. Clinical evaluations tend
to occur spaced in time. Further, the assessments used are mostly
subjective. The gold standard for evaluating disease severity is
MDS-UPDRS. The increase in sensor usage enabled objective
evaluation and continuous monitoring of the disease fluctuations.
One of the symptoms that most affect mobility are gait disor-
ders. The use of gait characteristics started to become popular to
monitor the disease. However, the approaches used lack in-depth
knowledge of machine learning models for disease staging. In
our work, we try to estimate the MDS-UPDRS part III score from
accelerometer data. We collected data from 74 patients using the
Axitvity AX3 device both on the wrist and lower back. We did
experiments with different models, features, and windows size.
We achieved a 4.26 Mean Absolute Error on the on left out 10%
data using both devices with a 2.5-second sliding window and a
random forest model for prediction. We contribute with a com-
parison of the performed experiments and provide, according to
our experiments, the optimal models for MDS-UPDRS part III
estimation using only accelerometer data.

KEYWORDS
gait, accelerometer, mds-updrs, Parkinson’s disease, features, ma-
chine learning, models

1 INTRODUCTION
Parkinson’s Disease (PD) is a neurodegenerative disease that
affects around 1% of the world’s population. This disease is char-
acterized by motor and non-motor symptoms [15]. Motor symp-
toms include bradykinesia, tremor, rigidity, and gait impairment.
These are present in the early stages of the disease and worsen
as the disease progresses.

Although there is no cure, the available pharmacological and
non-pharmacological therapeutic interventions effectively con-
trol symptoms. However, as the disease progresses their efficacy
tends to reduce and motor complications, such as motor fluc-
tuations and dyskinesia, appear [11]. These have been labeled
as ’ON’ and ’OFF’ stages [4]. To minimize the impact of these
fluctuations and inform better the clinicians there is the need to
periodically assess the symptoms. Generally, these evaluations
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require a visit to a clinic or hospital. Clinicians use validated as-
sessments for PD to characterize a patient’s current disease stage
[9]. These assessments occur spaced in time and can be hard to
capture all the fluctuations that may have happened between
appointments. Further, instruments used in clinical practice fo-
cus on subjective evaluations. Namely, visual assessments during
clinical visits that are supported by clinical scales.

The gold standard for evaluating disease severity in PD is the
Movement Disorder Society-Sponsored Revision of the Unified
Parkinson’s Disease Rating Scale (MDS-UPDRS). This is a com-
prehensive rating scale that assesses both motor and non-motor
symptoms associated with Parkinson’s [7]. To optimize disease
management, close monitoring of symptom fluctuations is crucial.
However, today this monitoring is usually performed through
medical appointments, every six months, with a mean duration
of 30 minutes. Additionally, what published evidence suggests is
that patients perform differently during these moments, provid-
ing only information about their best capacity, rather than their
usual performance in their daily lives.

The democratization of sensors’ usage, namely the body-worn
devices, that measure acceleration, and angular velocity allowed
the increase of objective evaluations [10]. These devices passively
monitor patients during clinical evaluation and in free-living
environments. Furthermore, allowmovement metrics and feature
extraction that can be related to motor symptoms or clinical
scales used for disease assessments [6]. Gait disorders are one
of the symptoms that most affect mobility. Inertial measuring
units can help to identify fluctuations. There have been studies
that leverage the identification of walking bouts to extract gait
metrics like step length or step variability [1, 4].

Research using these gait characteristics as a marker for PD
has demonstrated the potential for monitoring the disease in
several ways [2]. While the use of these gait characteristics has
become a popular approach for monitoring PD, novel research
has started to analyze signal processing metrics that could also
be of use for this purpose. In a 2019 study, the contributions of
signal-based features and gait characteristics for the classification
of PD were analyzed [13]. Another emerging method to stage
PD is the use of total scores of the entire MDS-UPDRS or sub-
parts of the scale. Specifically, MDS-UPDRS III scores have been
empirically demonstrated as a good metric for monitoring the
progression of PD [12]. As such, several studies have focused
on the prediction of this score to monitor disease progression.
A recent example of this approach for the monitoring of PD
progression is the 2021 study that leveraged a convolutional
neural network (CNN) model trained using inertial data collected
from the lower back during gait to estimate MDS-UPDRS III
scores [14].While these results are promising, the authors suggest
that a comparison with traditional feature-engineered machine
learning models could be an avenue for future work, towards

19



Information Society 2022, 10–14 October 2022, Ljubljana, Slovenia Lobo et al.

the deployment of such technologies for continuous monitoring
of PD. Other studies have revealed that it is possible to estimate
PD progression using gait data collected with accelerometers [8].
However, the relative efficacy and effect of different approaches
to data collection and processing, and machine learning pipeline
design still lack consensus and clear comparisons that could help
inform future research in this field.

In our work, we try to estimate the MDS-UPDRS part III from
accelerometer data. We collected the data using the Axitvity
AX3 device both on the wrist and lower back [3]. Our dataset
contains data collected from 74 patients (HY between 2 and 4)
at Campus Neurológico (CNS), a tertiary specialized movement
disorders center in Portugal. The final subset of data contained
267 instances of gait from 104 evaluation sessions. We did differ-
ent experiments with 4 models (Random Forest, XGBoost, SVM,
Linear Regression), and 59 features from the statistical, spectral,
and temporal domains. Furthermore, we used non-overlapping
window sizes of 2.5 and 5 seconds. To validate the trained models
we used Leave One Subject Out (LOSO) cross-validation.

Our results showed that the best configuration, with the lowest
prediction error on the left out of 10% data, achieved a 4.26 MAE,
with the Random Forest model, and a 2.5-second sliding window
using combined data from the wrist and lower back. For all of
the selected models, the configurations that achieved the best
results using either of the validation schemes used data collected
from the lower back or both sensors. Most models performed
better using a 5-second window length, with the exception of
the xgboost model. The best-performing linear regression and
SVM-based models used the SURF and relieF feature selection
methods.

Therefore, we contribute with the comparison of different
models, features, sensor placement, and window sizes. We pro-
vide, according to our experiments, the optimal models for MDS-
UPDRS part III estimation using only accelerometer data.

2 METHODS
The MDS-UPDRS III estimation was performed using different
approaches to data collection, signal processing, and using dif-
ferent machine learning pipelines. In this section, we describe
the steps taken together with the variables for each step, in order
to enable a comparison between different design decisions and
their effect on the estimation of the disease stage.

2.1 Data Collection
We collected data from 74 patients with PD at CNS from peri-
odic evaluations conducted by trained physiotherapists. Each
participant wore an Axivity AX3 on the wrist and lower back
during a set of clinical assessments. Accelerometer data was set
to record at 100 Hz. Our dataset includes 267 instances of gait
from 104 evaluation sessions of the 10-meter walk. MDS-UPDRS
were also applied for each patient in each session. Among these
patients, 49 were male and 23 were female, while the gender of
the remaining 2 patients was not reported. The average patient
age was 70.4 years (SD=13.12). The average weight was 71.76
kg (SD=13.89) and the average height was 166.49 cm (SD=9.26).
Finally, the average MDS-UPDRS III score was 40.92 (SD=14.31)
and 2.57 (SD=0.97) for the H&Y scale.

2.2 Data Pre-Processing
In order to isolate gait instances, the selected data files were
segmented using the annotated timestamps for the 3 trials of the

10-meter walk test. Visualization of each of the segmented gait in-
stances was then created in order to exclude session data that con-
tained sensor failures and misalignment, or mismatched times-
tamps. During this step, the vector magnitude of the accelerome-
try signal was computed and appended to each segment using
the traditional euclidean vector norm formula

√︁
𝑥2 + 𝑦2 + 𝑧2. To

avoid the possible temporal drift associated with the process,
a resampling step was performed after segmentation to ensure
even sampling, as required for the extraction of some of the used
Time and Frequency domain features. Finally, all segments were
filtered using a fourth-order, digital low pass Butterworth filter
with a cut-off frequency of 20 Hz in order to remove possible
”machine noise” [5].

2.3 Evaluated Models and Features
We used 16 statistical, 26 temporal, and 17 spectral domain fea-
tures, with a total of 59. They were computed from all accelerom-
etry axes and vector magnitude. A sliding window technique
was used to segment the signal into non-overlapping windows
from which the features were extracted. Different feature data
frames were then created using 2.5 and 5-second windows, both
of which were previously used in the literature [14], in order
to assess the effect of window size on the estimation task. Dur-
ing this feature extraction process, MDS-UPDRS III scores were
also computed and appended to the corresponding windows for
both data frames. The first step toward feature selection was
to use a variance filter to exclude features with low (<0.025%)
or zero variance which lowered the feature space from 2081 to
266 in the 2.5-second window and 3081 to 452 in the 5-second
window. While this reduction may seem drastic, it is to be ex-
pected because of the way Time Series Feature Extraction Library
works, computing the same feature several times for different fre-
quencies for example which results in a large number of feature
columns with hardly any variability, and thus, descriptive power.
A further feature selection step was performed using four differ-
ent feature selection methods that implement different strategies
for feature ranking. Each of these feature selection algorithms
was used to rank and select the top 10/25/50 features to be used
for the regression task using the linear regression algorithm,
and with the support vector-based model. The complete feature
subset was also used for these models, in order to establish a
baseline comparison with the remaining tree-based models that
are less affected by the number of features due to their capability
to perform intrinsic feature selection.

For each model, a set of parameters were selected and used in
a grid search procedure to test all possible combinations. This
procedure was then carried out for each sensor placement and the
combined sensors, and for the different sliding window lengths
used during feature extraction, in order to compare the effect of
these variables for the estimation task. Leave One Subject Out
(LOSO) cross-validation was used during the grid search proce-
dures in order to avoid overfitting and optimize the models for
generalizability. Finally, the optimal models for each combination
of these variables were saved and used for the ensuing valida-
tion tasks. To validate the trained models, the original dataset
was split into training and testing subsets. The training subset
comprised 90% of the data and was used during the grid-search
procedure for training the models using LOSO cross-validation.
The remaining 10% of the data was then used as a validation set
to test the model’s performance on unseen data from patients
whose data the model had already seen, providing information on
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Figure 1: Overall optimal predictions on the 10% of left
out data using a Random Forest model on data collected
from both sensors and a 2.5s sliding window. Each point
represents a window.

the model’s ability to estimate MDS-UPDRS III scores for patients
that were already known to these models. These steps yield two
different scores for each of the optimal models using the same
Mean Absolute Error (MAE) evaluation metric: the average MAE
for all LOSO splits during training and the MAE for the held-out
validation set. For the purpose of this study, this metric is defined
as the mean absolute difference between real (x) and estimated
(y) MDS-UPDRS III scores over the number of samples used for
estimation.

3 RESULTS AND DISCUSSION
This section lays out the results from all of the steps taken to-
ward UPDRS III estimation, including data processing, feature
extraction and selection, and finallymodel training and validation
results.

3.1 Optimal configurations
The configuration with the lowest prediction error on the left
out 10% of data used data from both devices processed using
a 2.5-second sliding window and a Random Forest model for
prediction, achieving 4.26 MAE and strong correlation (𝜌 = 0.93)
as illustrated in Figure 1. The best performing configuration
when performing LOSO CV was a Support Vector-based model,
using data from both sensors but a 5-second feature extraction
window, achieving a MAE of 9.99. While predictions using this
model on the validation set were less accurate than some of the
other options at 7.94 MAE, it achieved the best balance when
considering both of the validation schemes. Table 1 summarizes
the optimal results achieved by each model along with the used
data sources and sliding window length for the 10% left out and
LOSO validation tasks.

3.2 Sensor placement and windows size
Both device placement and window length used during feature
extraction significantly impacted the performance of all models.
For all of the selected models, the configurations that achieved
the best results using either of the validation schemes used data
collected from the lower back or both sensors combined. Specifi-
cally, all of the non-tree-based models performed better in both

val_m model device_placement win_length ft_sel num_fts loso_mae val_mae
1 rf combined 250 - 266 11.50 4.26
1 xgboost trunk 500 - 229 11.67 4.39
1 svm combined 500 SURF 25 9.99 7.95
1 lin_reg combined 500 reliefF 25 10.21 8.98
2 rf combined 500 - 452 11.39 11.39
2 xgboost trunk 250 - 133 11.49 5.74
2 svm combined 500 SURF 25 9.99 7.95
2 lin_reg combined 500 reliefF 25 10.21 8.98

Table 1: Optimal configurations used by each model to
achieve optimal MAE on the left out 10% of data (val_m =>
1) and LOSO (val_m => 2).

validation schemes using data from both sensors, with the excep-
tion of the SVM-based model using a 2.5-second window, which
compared to the other options using the same window length
achieved lower, albeit negligible, validation MAE using data from
the wrist. As for the tree-based models, optimal validation MAE
was attained by models using both sensors with the 2.5-second
sliding windows, and data from the lower back for the same
models using the 5-second window. Figures 2a and 2b illustrate
the intra and inter-model comparison for both of the validation
schemes, using different window lengths. While the fluctuations
were relatively low using LOSO CV, most models performed bet-
ter using a 5-second window length, with the exception of the
xgboost model. MAE using the left out 10% of validation data
fluctuated more considerably but was also lowest using 5-second
windows for all models except RF.

3.3 Optimal parameters
As for model parameters, excluding linear regression, the remain-
ing models had different parameters to achieve the best perfor-
mance during LOSO CV. For Random Forest (criterion: mae ;
max_features: 0.333 ; n_estimators: 250), for xgboost (colsam-
ple_bynode: 1; eta: 0.1 ; importance_type: total_gain; max_depth:
3 ; num_parallel_tree: 100 ; tree_method: gpu_hist), and for svm
(C: 10 ; epsilon: 0.3 ; gamma: auto ; kernel: rbf). The xgboost was
the one that used only the trunk sensor. The others models used
both devices. We used a Grid Search procedure that exhaustively
tested all parameter combinations for each model, independently
of the used device placements and sliding window lengths. The
exhaustive nature of the grid search proceduremakes this method
of parameter optimization computationally expensive. For this
reason, and considering that the procedure was used for several
models, the used parameter space for each model was not as
comprehensive as those used in some other works with a smaller
scope and narrower focus. However, the present results should
still serve as a good starting point for model tuning in future
research.

(a) LOSO CVMAE values (Y-axis)
for different device placements
using 5-second windows.

(b) LOSOCVMAE values (Y-axis)
for different device placements
using 2.5-second windows.

Figure 2
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3.4 Feature importance
For the models that benefited from it, several feature selection
methods were tested, along with different numbers of features
to select. The best performing linear regression and SVM-based
models used the SURF and relieF feature selection methods re-
spectively, both selecting 25 as the optimal number of features.
We then selected the top 20 for each model. Among the 8 top per-
forming models across the two tested window lengths, no model
used data exclusively from the wrist, and only 3 models used
data exclusively from the trunk. As for the remaining models,
the majority of top-ranking features were extracted from devices
mounted on the lower back. In some cases, no wrist features were
ranked among the top 20, which suggests that although these
were used for the estimation task, their contribution is minimal,
which is in line with the minimal performance gain in these mod-
els when compared to their counterparts using data exclusively
from the lower back. Features from the anteroposterior plane of
movement (z-axis) were the most prevalent among the top 20
extracted from the trunk sensor, consisting of 50 out of the 140
features considered for this analysis. The vertical plane of move-
ment (x-axis) produced the least amount of features among those
considered here, with only 22 ranking among the top contribut-
ing features. Spectral-domain features were the most prevalent
among these, making up almost half of the 140 considered fea-
tures, with temporal domain features coming in second by a small
margin, and temporal features last consisting of a quarter of this
total.

3.5 Limitations
The dataset used in this study consisted of data collected from 74
patients. While this number of patients is significant for prelimi-
nary results, a larger sample size could improve the estimation
task and further validate the present findings. Beyond the volume
of data used to train the models, a wider range of MDS-UPDRS
III and Hoehn and Yahr scores could also possibly improve the
results, by including a wider variety of walking patterns that in
smaller sample sizes could be considered outliers and negatively
affect performance. Furthermore, the inclusion of a healthy co-
hort in the dataset could provide a baseline for the models to
recognize healthy gait, exacerbating the difference between data
from healthy and affected subjects. Therefore, in future work a
longitudinal study in free-living environments with a larger sam-
ple size to address our limitations and extend our conclusions.

4 CONCLUSIONS
This paper presents a study that compares the different models,
features, and window sizes to estimate MDS-UPDRS part III using
acceromeleter data. One of the most common disorders for people
with PD is gait. The increase in sensor usage opened the oppor-
tunity for increasing objective evaluations. However, there is a
lack of knowledge of the current machine learning approaches.
In our work, we compare 4 machine learning models (random
forest, xgboost, svm, and linear regression), 59 features (16 statis-
tical domain, 26 spectral domain, and 17 temporal domain), and
windows size (2.5 and 5 seconds). To validate our models we used
LOSO cross-validation. We showed that the configuration with
the lowest prediction error on the left out 10% of data used data
from both devices processed using a 2.5-second sliding window
and a Random Forest model for prediction, achieving 4.26 MAE.
This work opens the opportunity to improve the knowledge of
machine learning approaches. However, in future work, there are

opportunities for longitudinal studies in free-living environments
with larger datasets.
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ABSTRACT
Addressing one’s mental health has never been more important.
The incidences of mental diseases, such as depression or anxiety
disorders, have drastically increased in recent years. The longer
an adequate treatment is delayed, the greater the impact on the
severity of the illness which often results in long absences from
work. With the development of smart devices and wearables, it
is already possible to measure many physiological parameters
in everyday life. In addition, monitoring people in their natural
environment offers many advantages, e.g. it is not based on retro-
spective feelings and memories but can measure and reflect the
momentary state. This conceptual paper presents an overview
of possible elements of a system for automated monitoring of
mental health characteristics in the home. We describe examples
of typical parameters for various mental disorders and present
different systems and methods to measure them. Furthermore,
we show how the individual components of a system can be
connected to get a holistic view of specific mental health charac-
teristics. Finally, we also discuss challenges and limitations.

KEYWORDS
mental health, wearables, ubiquitous sensing, monitoring concept

1 INTRODUCTION
Being mindful of mental health is more important than ever.
In 2019, according to the World Health Organization (WHO),
one in eight people worldwide suffered from a mental disorder
[20]. That is associated with significant impairments in thinking,
emotion regulation, or behavior. The WHO also states that in
2020, the number of people with depression and anxiety disorders
increased significantly, due to the COVID-19 pandemic.

Themost commonmental illnesses include depression, anxiety
disorders, bipolar disorder, and obsessive-compulsive disorder
(OCD), among others. Often, initial symptoms are not recognized
and, consequently, diagnoses are made late, which in many cases
leads to a worsening of the symptoms [6]. Nevertheless, mental
illnesses have, partly overlapping, typical characteristics. For
example, fatigue, and lack of energy are among the most common
symptoms of depression, or checking things over repeatedly are
signs of OCD. Some of these characteristics are measurable and
interpretable withmodern sensors, devices, andmachine learning
models especially when it comes to behavioral or determining
physiological parameters. In addition, studying people in their
natural environment respectively at home, so-called ambulatory
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assessment, has many advantage as it can minimize retrospective
bias. On the one hand, it enables long-term monitoring which
makes it easier to detect small changes. On the other hand, data
can be collected at the time of occurrence and do not have to
be remembered and described retrospectively when the actual
condition has already passed [17].

This paper presents a collection of elements that can be in-
cluded in a system for automatic monitoring of mental health
characteristics in the home environment. These approaches go
beyond conventional questionnaires and refer to technical pos-
sibilities for measuring individual characteristics. For this, we
look at various characteristics of individual mental disorders
and present ways in which these can be measured in an auto-
matic way. However, questionnaires, for example in the form
of ecological momentary assessments (EMAs), can always be
considered as an additional tool for comparison with the auto-
matic measurements. Finally, we also review different solutions
for measurability and propose a potential system overview.

2 BACKGROUND
Mental illnesses are disorders that are very diverse and individual
and can affect thinking, mood, and behavior. In 2019, 280 million
people were living with depression, 301 million people had an
anxiety disorder, 40 million people had a bipolar disorder and
14 million people suffered from an eating disorder [20]. But also
lesser-known disorders, such as OCD, which affects about 2.3% of
people at least once in their lifetime [11], should not be ignored.

There are characteristics or behavioral patterns that can be
observed in various mental illnesses and also generally indicate a
bad mental health state. These include, but are not limited to, sad-
ness and dejection, excessive anxiety or worry, decreased ability
to concentrate, significant fatigue, low energy, sleep problems,
and inability to cope with everyday problems or stress [2].

Nevertheless, each mental disorder also has very specific char-
acteristics. Depressed patients, for example, often describe feeling
empty and worthless inside and experiencing hopelessness, sad-
ness, and restlessness. Sleep is also affected in most patients, but
it can go both ways, with insomnia or excessive need for sleep
as symptoms. Furthermore, a loss of interest in hobbies and so-
cial activities may also indicate depression. Sometimes patients
even report unexplained physical problems such as back pain or
headaches [1]. People with bipolar disorder also experience the
above symptoms during the depressive phase. But in addition
to this, patients also go through manic episodes. In this phase,
many characteristics of the depressive episode reverse. Patients
often experience an energetic and euphoric phase where their
motivation is increased, concentration is improved, less sleep is
required, and they feel the drive to be active [3].

There are several types of anxiety disorders, including gen-
eralized anxiety disorder (GAD), panic disorder, social anxiety
disorder, and phobia-related disorders [4]. They have in common
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that people suffer from anxiety over a long period of time, which
also often increases and interferes with daily activities ranging
from the job to personal relationships. In anxiety disorders, indi-
viduals often experience physical symptoms. GAD often comes
with headaches, muscle and stomach pain, or other unexplained
aches. During a panic attack, affected people may feel a racing
heart, sweat intensely, tremble, experience loss of control, or feel
chest pain. In addition, people with social anxiety disorder tend
to blush, adopt a rigid posture, or speak with an overly soft voice.

For OCD, patients suffer from recurrent obsessive thoughts
or compulsive acts. Obsessive thoughts are ideas, images, or
impulses that repeatedly appear in themind of the affected person.
The patient cannot successfully suppress these thoughts. Further,
more obvious symptoms of OCD are compulsive acts or rituals.
They are closely related to the obsessions and serve to alleviate
them and the anxiety that is constantly present. The patient is
aware of the unusualness of these actions. Most compulsive acts
involve cleaning (especially hand washing), repetitive checking
to ensure that a potentially dangerous situation does not occur,
or order and cleanliness [5].

For any mental illness, not every patient needs to experience
all of the characteristic symptoms. Because symptoms can overlap
between disorders, it can be difficult to clearly assign them to
a single mental illness. By having a system that automatically
monitors a range of characteristics, a more holistic picture of
mental status can be created, and changes can be detected early.

Diagnoses for mental illness can only bemade by professionals.
Experts often use various forms of questionnaires and scales
to determine the severity of an illness (e.g. Beck Depression
Inventory for depression or Yale-Brown Obsessive Compulsive
Scale for OCD). However, collecting and analyzing sensor data
to monitor mental health in general, is a topic that has been
studied a lot in recent years but is still very relevant and has
great potential. The majority of studies are related to the analysis
of smartphone data, but wearables are also increasingly used for
mental health studies. When it comes to the specific monitoring
of certain mental illnesses, the vast majority of these studies
relate to anxiety disorders, depression, bipolar disorder or stress
in general [14]. This paper focuses on technical possibilities to
unobtrusively measure certain mental health characteristics in
the home environment by using the latest technologies.

3 MONITORING SYSTEM ELEMENTS
To monitor certain mental health characteristics in the home
environment, it is possible to use various new wearable devices,
human activity recognition (HAR), indoor positioning systems
(IPSs) and already derived parameters from consumer devices.

3.1 Smart Devices and Wearables
The smartphone is an integral part of everyday life and almost
all of us carry it with us all the time. Although it is the most com-
mon everyday smart device, the use of so-called wearables has
also been rising rapidly in recent years [19]. The term Internet
of Things (IoT) is shaping the technological development of the
last decade. It includes devices such as activity trackers, smart-
watches, and smart rings. Since these are worn on the body and
therefore often called wearables, they can measure physiological
parameters such as heart rate variability (HRV), blood oxygen
level, or skin conductivity. The modern smart devices contain
a variety of sensors, such as oximetry sensors, skin tempera-
ture, and ambient temperature sensors, electrodermal activity

sensors, heart rate sensors but also Global Positioning System
(GPS) and inertial measurement units (IMUs). The latter is a com-
bination of several inertial sensors such as a 3D accelerometer
and a 3D gyroscope. However, the term IoT covers many more
areas and intelligent devices, such as connected personal scales,
smart ovens, and stoves, or smart lighting systems which can be
grouped together under the term smart home.

3.2 Human Activity Recognition
The topic of HAR has been widely researched as it offers enor-
mous potential and numerous use cases [8, 9, 12]. It comprises the
research field of automatic detection and differentiation of vari-
ous everyday activities and can be divided into video-based and
sensor-based HAR. With the development of new and increas-
ingly powerful smart devices and wearables, HAR is becoming
less expensive, easily accessible, and unobtrusive. Research shows
that when combining data from different devices, such as smart-
phone and smartwatch, the results become even more accurate
[13]. These days, HAR goes far beyond simple classifications,
such as the distinction between sitting, standing, and walking.
Among others, HAR also finds great application in the healthcare
sector, e.g. through gait analyses that indicate diseases such as
Alzheimer’s [18] or in systems that focus on elderly care to detect
falls [10], for example.

3.3 Indoor Positioning Systems
The ability to determine a person’s exact location in a home can
help better identify activities that are connected to specific loca-
tions, for example, compulsive or eating behavior. Although GPS
offers high coverage, it is not suitable for indoor localization be-
cause the receiver and satellite have to be in the line of sight, and
walls, roofs, and other objects prevent this. That is why in recent
years approaches for IPS have been designed which use vari-
ous available technologies such as radio-frequency identification
(RFID), Wireless Local Area Networks (WLAN), Bluetooth Low
Energy (BLE) beacons, and more recently Ultra Wideband (UWB)
[15, 21, 22]. Localization techniques can be divided into triangu-
lation algorithms (e.g. Time of Arrival (ToA), Time Differences of
Arrival (TDoA), Received Signal Strength Indicators (RSSI)-based,
Angle of Arrival (AoA)), scene analysis (e.g. Fingerprinting-based
techniques) and proximity detection algorithms [21]. The latter
is the process of determining whether a user is close to a cer-
tain range. This concept is often found in combination with BLE
beacons, which are installed stationary at points of interest and
send Bluetooth packets that are picked up and processed by the
user’s smartphone, calculating the distance. In a scene analysis
with using Fingerprints, measurements as e.g. RSSI-values, are
collected in an offline phase for different positions and stored
in a map. For position determination in real-time, the current
measurements are then compared with offline measurements to
determine the user’s location [22].

Different localization techniques have advantages and dis-
advantages and it depends on the use case which methods are
suitable. Most triangulation techniques (e.g. AoA) provide high
accuracy but require complex hardware and extensive synchro-
nization. Whereas RSSI- and Fingerprinting-based methods are
fairly easy to use but with lower accuracy or, in the case of Finger-
printing, with a dependence on a predefined map that is sensitive
to any change in the home environment [22].
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3.4 Derived Parameters
In addition to using raw sensor data for use cases like HAR or IPS,
consumer devices often provide pre-calculated values and derived
parameters, such as about sleep. Many device manufacturers
try to draw conclusions about sleep duration, sleep quality, and
sleep phases. Additionally, information such as screen time, the
frequency with which the phone is picked up, or the number of
calls and messages is also documented. Even though many of
these values are pre-calculated and in some cases do not provide
much information on their own, they can give insights when
combined with each other and with data from additional devices.

4 EXEMPLARY SYSTEM OVERVIEW
This section describes example characteristics and their monitor-
ing possibilities, and proposes a connected system architecture.

4.1 Characteristics Monitoring
The possible elements of a monitoring system presented in the
previous section, offer particular value when combining them.
Different systems and methods are needed to measure specific
psychological characteristics. To illustrate this, we looked at some
symptoms and characteristics of mental illnesses and considered
how these can be measured. The following Table 1 shows a short
list of mental health characteristics and possible ways of mea-
suring them. This table represents an exemplary overview and
therefore does not claim to be complete. With this table, we show
that different characteristics can be measured and documented
with the same sensors, wearables, and systems but also that one
characteristic can be determined with more than one measure-
ment. We focused on the three main elements for monitoring,
namely a HAR system, measuring and evaluating physiological
parameters (abbreviated with PP in the table), and using an IPS.
Additionally, we list other parameters or devices which can sup-
port the measurement of the respective characteristic. For some
characteristics, additional information might increase the accu-
racy and lead to a greater knowledge gain (indicated by (x) in the
table). In general, it can be said that oftentimes the combination
of different input signals and parameters leads to a better system
quality [7]. We do not present the exact algorithms and devices,
as these depend heavily on other external factors (availability of
devices, overall use case, acceptance of the user, privacy aspects).

It has long been known that sleep, e.g. in form of insomnia,
is an essential feature of mental disorders such as depression or
anxiety [16]. Sleeping behavior can be observed across a variety
of systems and devices. By means of a HAR system, for example,
it is possible to document how often a person wakes up at night,
how restful the sleep is, and when and whether one gets out
of bed in the morning. Monitoring this behavior can help in
observing depressive phases, where patients sometimes find it
difficult to get out of bed at all. But beyond that, it can also make
sense to include other information, such as the position in the
apartment in order to get more contextual information.

The measurement of physiological parameters can help for the
majority of the characteristics. By measuring skin conductance,
for example stress, which plays a major role in many mental
illnesses, could be detected. Furthermore, it is also known that
social behavior changes in some mental disorders. For example,
social interaction decreases in depressive or anxiety patients but
increases in people in a manic phase.

For some characteristics, it is particularly interesting to look
at changes over time because mental illnesses often have very

Table 1: Listing of exemplary mental health characteristics
and possibilities of monitoring them. HAR corresponds to
the detection of human movements with motion sensors,
PP stands for measuring physiological parameters and IPS
implies the positioning of a person in the room or home.

Characteristic HAR PP IPS Others

Sleeping
Behaviour x x (x)

derived smartphone
and smartwatch
parameters (sleep
hours, sleep phases,
sleep quality)

Compulsive
Handwashing x (x)

Compulsive
Checking x x

Stress
Level (x) x

Eating
Behavior x x x

interaction with
IoT devices, e.g.
personal scale,
microwave

Social
Interaction (x) (x)

derived smartphone
and smartwatch
parameters (screen
time, pick up times,
phone call and
messages frequencies)

individual expressions. For this purpose, it can be helpful to train
a personalized machine learning model for a potential patient
in order to observe variations from normal behavior. In general,
personalized models are well suited to represent the individual
aspects of everyday activities.

4.2 Connected System
In Figure 1 we demonstrate how the individual components of a
system for monitoring characteristics of mental disorders can be
connected. Depending on the concrete use case, data from mul-
tiple devices will be constantly collected. For energy efficiency,
it makes sense to store the collected data on the respective de-
vice first, and only send it to a data hub from time to time. For
this, smartphone applications like SensorHub [7] are very useful.
Multiple (wearable) sensors can be connected via Bluetooth, col-
lecting and storing the data in a central place and a unified format
to provide complete control over the data. Additionally, systems
like SensorHub provide the possibility to get point-in-time feed-
back from the user by repeatedly querying certain conditions (be-
havior, feelings, experiences), so-called EMAs. This is extremely
valuable and these subjective sensations could be supported and
enriched by objective, quantifiable sensor measurements.

A system designed to give a holistic view of a current state is
not intended to make assessments or provide results at any time.
That means these kinds of systems have a long-term character
rather than being a snapshot. Moreover, when working with raw
sensor data, this often means that it needs a lot of pre-processing
and cleaning. This includes e.g. filtering and de-noising. When it
comes to machine learning, domain-specific knowledge is also
helpful in order to come up with meaningful features.
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Figure 1: System Overview to Monitor Mental Health Characteristics at Home

5 CHALLENGES AND LIMITATIONS
Each component of an overall system has its advantages and
disadvantages. It always has to be determined which features
predominate for the specific use case. It should also be noted that
issues like data security, especially with such sensitive topics as
mental disorders, play a tremendous role. For this, all actions
should be transparent to the user. The consumer must be in-
formed in advance about all processes, devices andmeasurements,
and be able to stop the monitoring at any time. This complete
transparency can result in the user consciously or subconsciously
adapting his/her behavior when he/she feels observed. However,
these effects should be negligible, as this type of monitoring
happens over a longer period of time and thus integrates into
everyday life over time.

Furthermore, it should be kept in mind that systems that in-
tegrate everyday user devices (smartphone, smartwatch, and
activity tracker) are also always limited in their battery power,
especially if they are in constant use. Here, a balance must be
found between monitoring frequency and consumption. The
times when the devices have to be charged (usually daily) must
also be taken into account in the system design.

In general, one of the most important factors is that the moni-
toring system is as pleasant and unobtrusive as possible for the
user. It must be installed with as little effort as necessary and be
perfectly integrated into everyday life.

6 CONCLUSION
This paper presented possible ways to measure various charac-
teristics of mental disorders. We want to emphasize that systems
of this type are not diagnostic tools and are in no way equivalent
to professional assessments. But they can support and help to
describe a given state and to perceive and document changes. In
general, it is helpful to make psychological characteristics mea-
surable and thus to support the subjective feelings of patients by
means of objective measurements. Moreover, even small changes
can be detected and documented at an early stage and help to
take countermeasures in time. It could provide new insights into
behavioral patterns, overlaps of different diseases, and personal
aspects. Furthermore, these forms of monitoring systems cannot
only be used for early detection but also for relapse supervision.

In future work, an exemplary monitoring system will be built
for detecting compulsive behavior as it occurs in patients suffer-
ing from OCD. We also want to determine to what extent such
systems are accepted by potential patients and also what other
limitations and possibilities are encountered.
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ABSTRACT
Background: Wearable devices can record physiological signals

from humans to enable an objective assessment of their Mental

State. In the future, such devices will enable researchers to work

on paradigms outside, rather than only inside, of controlled labo-

ratory environments. This transition requires a paradigm shift on

how experiments are conducted, and introduces new challenges.

Method:Here, an experimental framework for multi-modal base-

line assessments is presented. The developed test battery covers

stimuli and questionnaire presenters, and multi-modal data can

be recorded in parallel, such as Photoplethysmography, Elec-

troencephalography, Acceleration, and Electrodermal Activity

data. The multi-modal data is extracted using a single platform,

and synchronized using a shake detection tool. A baseline was

recorded from eight participants in a controlled environment.

Using Leave-One-Out Cross-Validation, the resampling of data,

the ideal window size, and the applicability of Deep Learning

for Mental Workload Classification were evaluated. In addition,

participants were polled on the acceptance of using the wearable

devices. Results: The binary classification performance declined

by an average of 7.81% when using eye-blink removal, under-

lining the importance of data synchronization, correct artefact

identification, evaluating and developing artefact removal tech-

niques, and investigating on the robustness of the multi-modal

setup. Experiments showed that the optimal window size for

the acquired data is 30 seconds for Mental Workload classifica-

tion, with which a Random Forest classifier and an optimized

Deep Convolutional Neural Network achieved the best-balanced

classification accuracy of 70.27% and 74.16%, respectively. Con-
clusions: This baseline assessment gives valuable insights on

how to prototype stimulus presentation with different wearable

devices and suggests future work packages, paving the way for

researchers to investigate new paradigm outside of controlled

environments.

1 INTRODUCTION
The concept of Mental Workload (MW) originates from the field

of psychology, refers to the amount of working memory used

in the brain, and is historically researched on in the context of

laboratories [1]. High levels of MW experienced over an extended

period of time lead to Mental Fatigue (MF). It can be assumed
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that the onset of MF depends on contextual factors such as level

of sleep during previous nights, overall health, emotional state,

and more. MF can increase the amount of mistakes an individual

does, and hinder work-performance amongst others. The impact

of MF on economies can be estimated from the finding that a

fatigued work-force costs the US economy an approximation

of 18 billion USD per year [2]. Methods that quantify the level

of MW an individual experiences in and outside of laboratory

environments are of interest to a broad community.

MF can be circumvented in various ways, e.g. by taking more

Micro-Breaks [2]. To quantify the impact of interventions, mea-

surement frameworks have to be developed in controlled envi-

ronments and evaluated for use in uncontrolled environments.

Subjective measurements of MW can be performed using ques-

tionnaires or discussions with individuals. However, these ap-

proaches take time, require active truthful participation, and are

therefore not suited for every context. To overcome this hurdle,

objective measurement methods are researched, amongst which

EEG seems promising [3].

To-be-developed measurement frameworks for experiments

mainly conducted in controlled environments, such as MW quan-

tification, need to be combined with research on the quality and

amount of sensor data needed, accurate synchronization between

different modalities, and precise data labeling. Merging research

on all these aspects into one skeleton would increase the overall

usability of the resulting framework. This paper presents an ex-

perimental framework for baseline assessment on the use-case of

objective measurements of MW conducted across university stu-

dents. As data storage, compression, and transmission consume

a lot of battery power [4], the length of time windows required

for accurate classifications, the sampling-rate required, and the

time-series classification performance were evaluated. Finally,

participants of this study were surveyed about their experiences

with the two well-established wearable devices used, since this

framework can be customized in terms of stimulus presentation

and multi-modality used for the Affective Computing research

community in general. The measurement framework is presented

in detail, and necessary steps towards an experimental frame-

work for multi-modal recordings in uncontrolled environments

are outlined.

2 EXPERIMENTAL FRAMEWORK
The experimental framework for this study was built using Psy-

choPy ( v2022.2.0) [5] running under Python 3.10.4 in a controlled

environment, as a preliminary step for recordings in daily life.

Among the most frequently used software packages for visual

stimulus presentation
1
, Psychopy was preferred due to the us-

ability, automated calibration feature, and the real-time stimulus

1
http://hans-strasburger.userweb.mwn.de/psy_soft.html#imagen
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presentation [6]. The setup was implemented to induce MW in

line with common practice from state-of-the-art studies (e.g. [7]).

As a first step, participants were asked the put all the devices

into a box and shake them, to synchronize the devices. Then,

high magnitude tapping onto the space bar was performed to

synchronize with Psychopy. After instructing participants to min-

imize movement, a five minute relaxation video
2
was presented

for baseline recording. An eye-closing session of one-minute du-

ration followed, before the MW was induced. Participants had

to work on the N-Back task (n=3) for five minutes. Afterwards,

participants had to work for five minutes on the Stroop task,

where four colors (yellow, green, blue, and red) were shown for

a duration of 3 seconds. For every wrong answer, a buzz sound
was played to intensify the workload and provide feedback to

the participants. Both tasks were followed by the pairwise NASA

Task Load Index (NASA-TLX) questionnaire [8]. By using physio-

logical data recorded during the relaxation video and eye-closing

session as ’Low-to-No-Workload’-class, and using the data from

both MW tasks as ’High-Workload’-class, a binary classification

task was formed. Physiological data recorded during answering

of the questionnaires, or reading instructions for the MW tasks,

was excluded. With a ratio of 4:10 for ’Low-to-No-Workload’ to
’High-Workload’, the recorded data was imbalanced.

Two wearable devices were used: The Empatica E4 which

records skin temperature (4 Hz), PPG (64 Hz), and GSR (4 Hz),

alongside acceleration-readings (32 Hz) that can be used for the

identification and removal of artefacts. The Muse S device was

used, which records EEG (256 Hz) and accelerometer data (50

Hz). Following the 10/20-system for electrode placement [9], the

EEG electrodes of the Muse S
3
device are located at TP9, AF7,

AF8, TP10, with a reference electrode at FPz.

Synchronization

Instructions

Stroop

Video

N-back 

5 min

NASA TLX

5 min

Eye-Closing Instructions

5 min

Instructions

Instructions

Synchronization

1 min

NASA TLX

Figure 1: Study design of the experimental paradigm uti-
lized for the multi-modal framework

3 METHODS
The Muse S data was recorded using MindMonitor

4
and loaded

by devicely 5
, whereas the Empatica E4 data was recorded us-

ing the SesnsorHub Application [10]. Synchronization was per-

formed at simultaneous peaks in the accelerometer data, using

jointly6 on readings from both wearable devices. Acceleration

was caused once in the beginning and once at the end of the

experimental protocol: The devices were placed in the same box,

and the box was shook. This procedure was repeated after the ex-

periment. Potential offsets and time-shifts in the recordings were

automatically corrected by Jointly. Labeling of the sensor data

was performed using the information contained in the logs from

2
https://www.youtube.com/watch?v=S6jCd2hSVKA

3
https://choosemuse.com/de/muse-s/

4
https://mind-monitor.com/

5
https://github.com/hpi-dhc/devicely

6
https://github.com/hpi-dhc/jointly

PsychoPy. How data labeling will be performed for recordings in

uncontrolled environments remains an open question.

Once the data was labeled, data cleaning needed to be per-

formed. As time-series data is not uniform over time (e.g. due

to a temporary loss of connection), missing values needed to

be interpolated. Linear interpolation was performed by filling

missing data with the mean value of two neighboring data points.

Additionally, head-movements and eye-blinks predominantly

compromised the EEG recordings, while movements of the hand

predominantly compromised readings from the Empatica E4.

Removal of artefacts in the data from the Empatica E4 was per-

formed in three steps: First, both the raw values for accelera-

tion and BVP were normalized to the range of [-1, 1]. Second, a

fourth-order Butterworth band-pass filter with 0.5 Hz and 3.5 Hz

cutoff-frequencies was applied. Third, a Savitzky-Golay filter was

applied, using a 101-sample window and a 5th-degree polynomial.

These steps removed the baseline-drift in the recorded BVP sig-

nal. Additionally, adaptive noise cancellation was performed to

remove movement-artefacts from the BVP signal, by using linear

recursive least-squares filtering. Removal of artefacts from the

EEG signal was performed using spectral filtering with an infinite

impulse response filter. Following parameter recommendations

from the literature [11], a Chebyshev type 2 band-pass filter with

0.5 Hz and 48.5 Hz cutoff-frequencies and 40 dB attenuation in

the pass-band was applied. Thereby, the power-line interference

and other artefacts such as jaw-clenching were removed. Strong

artefacts for EEG recordings, especially in the frontal channels,

are eye-blinks [12]. Here, eye-blink were removed using the in-

dependent component analysis (ICA) [13].

Spatial filtering of the EEG data was investigated using the

common spatial pattern (CSP) algorithm [14] implemented in the

meet7 repository [15]. CSP performs a generalized eigenvalue

decomposition of two distinct mutlivariate sets of data, for which

an additive underlying mixture of sources is assumed. CSP basi-

cally maximizes power differences between the two conditions

’Low-to-No-Workload’ and ’High-Workload’. After derivation of

filter values for each channel, the filter with the highest Eigen-

value is chosen and applied to both the ’Low-to-No-Workload’-,
and the ’High-Workload’-, classes. The result is the sum of all

the multiplications of the respective scalar-filters with the cor-

responding electrode-channels, resulting in one single channel

which best describes the underlying phenomenon optimized for.

Temporal filtering describes the process of either rejecting

recordings from the process of building trials all-together (e.g.

physiological data recorded during answering of questionnaires),

or of building trials from the recorded data. Two important pa-

rameters have to be taken into account:window-size, andwindow-
overlap. Here, multiple parameters for the window-size were eval-
uated: 5 sec, 10 sec, 30 sec. The window-overlap was constantly

chosen to be 0.5 sec smaller than the respective window-size: 4.5
sec, 9.5 sec, 29.5 sec.

To extract different features, the cleaned BVP signal was used

to extract the heart rate variability using NeuroKit2 8
package

[16], which locates the peaks in the peak to peak (RR) inter-

val of the hear rate variability and calculates different time-and

frequency-domain features, partially mentioned below. Addition-

ally, the mean and standard deviations (SD) from GSR and skin

temperature were extracted. The different feature-sets utilized

7
https://github.com/neurophysics/meet

8
https://neuropsychology.github.io/NeuroKit/
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were extracted from the training data only, and can be summa-

rized as follows: CSP features: Gamma, Beta, Alpha, Theta and

Delta band powers, mean over the band powers, mean and SD of

the absolute band powers; BVP features:Mean and SD of the RR

intervals (peak to peak of Hear Rate Variability), SD of the suc-

cessive differences between RR intervals, ratio of SD and mean

RR intervals, low frequency band power (0.04 - 0.15 Hz), high

frequency band power (0.15 - 0.4 Hz), very high frequency band

power (0.4 - 0.5 Hz), ratio of low-high band power; GSR:Mean

and SD of absolute values, mean amplitude of Skin Conductivity

Response (SCR) peaks; Local Skin Temperature: Mean and SD

of absolute values; and PSD features: Power spectral density of

raw EEG of TP9, TP10, AF7, AF8.

Figure 2: The flowchart of the employed study protocol
with the necessary intermediate steps.

In total, three different evaluations were performed on the

data recorded in a controlled environment. First, two different

feature sets were investigated for data resampled to 10 Hz, using

a Random Forest (RF) classifier. This evaluation was performed

to investigate on the possibility of reducing the sampling rate

required per modality. Second, the optimal time window for time

series classification (TSC) of MW was investigated on by com-

paring the performance of different feature sets utilized by RF

and a Support Vector Machine (SVM). Therefore, the modalities

were utilized at the respective sampling rates recorded with and

simply combined. Third, the application of Deep Learning to this

task was investigated using a Deep Convolutional Neural Net-

work (DCNN) [17]. The DCNN was built of ten layers: Input (2D

convolution, 5x5, ReLu), 1st Hidden (2D Max Pooling, 2x2), 2nd

Hidden (2D convolution, 5x5, ReLu), 3rd Hidden (2DMax Pooling,

2x2), 4th Hidden (Flatten), 5th Hidden (Fully-Connected, ReLu),

6th Hidden (Dropout), 7th Hidden (Fully-Connected, ReLu), 8th

Hidden (Dropout), Output (Fully-Connected, Single-Output, Sig-

moid).

For the RF, the default hyperparameters of the RandomForest-
Classifier from scikit-learn were chosen. For the SVM, a radial

basis function kernel was utilized, and the gamma value was

calculated for each evaluation. The best hyperparameters of

DCNNwere identified using the sequential model based optimiza-

tion (SMBO) algorithm with the tree-structured parzen estimator

(TPE), which has been shown to outperform both grid search and

random search [18]. The derived hyperparameters are listed in

Table 1. The inputs to all classifiers were min-max normalized.

Hyperparameter Value Range Baseline Optimized

Dropout 0 - 0.5 (0.1) 0.5 0.3

Epochs 1 -200 (5) 200 25

Batch Size 1 - 1000 (50) 500 350

Conv. Layer 1 10 - 100 (10) 20 70

Conv. Layer 2 25 - 250 (25) 50 125

Hidden Layer 1 100 - 1000 (50) 500 200

Hidden Layer 2 100 - 1000 (50) 250 750

Window Size 5 - 30 5 30

Input Height 20 - 130 (10) 28 110

Input Width 20 - 130 (10) 28 110

Table 1: Hyperparameters for the DCNN. Values in paren-
thesis indicate incremental steps. Window size in seconds.

4 RESULTS
The first experimental evaluation used two different sets of fea-

tures, each resampled to 10 Hz. Averaged results of all of the

Leave-One-Out Cross-Validation for the classification tasks are

shown in Table 2.

Set # Window Size Blink Removal Balanced Acc.

Set 1 1200 sec no 74.06

Set 1 1200 sec yes 65.52

Set 1 6000 sec no 82.21
Set 1 6000 sec yes 73.49

Set 2 1200 sec no 77.31

Set 2 1200 sec yes 72.43

Set 2 6000 sec no 80.94
Set 2 6000 sec yes 71.84

Table 2: TSC Performance for RF. Set 1: Raw TP9, TP10,
AF8, AF7, Skin Temperature, BVP features. Set 2: Set 1 +
GSR. The row of the best performance is printed in bolt
face.

The second experiment evaluated on the optimal window-size.
Results are visualized in Figure 3, where the PSD feature set refers

to all the extracted features mentioned in 3, and the FE feature-

set refers to all but the PSD features. With the FE feature-set,

while RF performed best across all time-windows, the average

time series classification performance increased only marginally

across all TSC models when varying the window-size. The best
performance of 70.27% balanced accuracy was achieved for RF

with FE for a window-size of 30 sec.
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Figure 3: TSC Performance for RF and SVM. The choice of
features and windows significantly impacted inter-subject
TSC performance.

The third experiment investigated on the applicability of Deep

Learning to this task. The baseline-DCNN achieved a balanced

accuracy of 59.79%, whereas the optimized-DCNN achieved a

balanced accuracy of 74.16%.

Eight participants were recruited in this baseline assessment

and provided subjective feedback on their experiences with the

setup: No participant complained about uncomfortable feelings

due to pressure from the sensors, but sensors felt too bulky, and

the utilization of three different devices—two sensors and one

phone for recordings—seemed too complicated.

5 CONCLUSION
In the first experiment, it was found that eye-blink removal wors-

ened the TSC performance. This finding was consistent across

all test-runs, and the average loss in balanced classification accu-

racy was with 7.81% substantial. Amongst others, reasons for this

circumstance are: Firstly, the existence of only one eye-blink per

time window of 20 seconds duration was assumed, which proved

false. Secondly, more advanced algorithms for automatic eye-

blink removal and signal restoration exist, which outperformed

ICA-based methods [19, 20] and should have been applied.

In the second experiment, it was found that the best accu-

racy was achieved for a time-window with window-size of 30 sec.
This finding is in line with findings in the literature on affective

computing (e.g. [21]). Furthermore, the FE feature set performed

better for this task than the PSD feature set, for which the TSC

performance stagnated or even declined. Future work should

investigate on computing PSD features from further cleaned EEG

data, and on features such as power in key frequency bands.

Finally, it was found that the optimization of the DCNN also

led to choosing a window-size of 30 sec. This finding is in line

with the results from the second experiment, where the average

performance also peaked for the window-size of 30 sec. However,
as this was the maximum value evaluated for, it might be that the

models would have performed better for longer time-windows.

The performed baseline assessment highlights future work,

such as to investigate on better algorithms for artefact removal

(e.g. [19, 20]); on longer window-sizes, different DL models, more

features such as power-ratios; to recruit more participants; and

to investigate on feature-importance. Also, resampling the sen-

sor data to frequencies other than 10 Hz and investigating the

effect of interventions to remove MF in controlled environments,

should be performed. The presented framework needs to be ex-

tended to allow automatic randomization of the tasks, recovery

from crashes, more robust data extraction, to be evaluated for

applicability to uncontrolled environments, and published. Ex-

perimental paradigms for measuring MW need to be taken from

controlled environments, and frameworks that are under devel-

opment need to be tested and evaluated in uncontrolled settings.
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ABSTRACT
There are different methodological approaches to stress recog-

nition in different disciplines. In machine learning literature, a

typical approach is to select a target variable and try to predict it

as generally as feasible, but possibly with person-specific feature

normalization or personalization of models. In medical, psycho-

logical, and social sciences, the nested nature of data is often

taken into account by using multilevel models, especially with

repeated measures data. In our diary study, we asked partici-

pants to assess different aspects of stress every 90min for 15

working days. They accessed their questionnaires through an

Android application which also served to passively record phone

usage and sensor data. At the same time they wore Empatica

E4 wristbands which collected physiological data. This study de-

sign lends itself well to hierarchical consideration. In this paper,

we use variance partitioning, a technique which is also a part

of multilevel modelling, to inform a machine learning pipeline.

We show how consideration of different sources of variability

can help us decide how to personalize normalization of data or

machine learning models.

KEYWORDS
stress detection, ecological momentary assessment, variance par-

titioning, hierarchical data

1 INTRODUCTION
Chronic stress is a well researched medical, psychological, and

sociological phenomenon which has been shown to have detri-

mental health consequences [8]. It is less clear, however, how

daily experiences of stress translate into a long-term experience

of chronic stress [13]. In the STRAW project, we have tackled

this question by carrying out a longitudinal diary study [6].
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In machine learning literature, this problem falls under the

topic of affective computing [19]. Typical studies settle for one

definition of stress and either measure it by simply asking about

it or using one of the established psychological questionnaires

[2]. Next, stress detection is relayed to machine learning models

as a supervised problem in which objectively measured data are

used as predictors of self-reports, serving as labels.

The aim of this paper is to employ statistical techniques from

medical and social sciences to inform machine learning mod-

elling. Specifically, we analyse daily aggregated data collected

in our study and consider possibilities for analysis on a lower,

within-day level. We do this by describing the data in terms of

multilevel models and then assess how each level of measure-

ments contributes to the overall stress variability.

2 METHODS
2.1 Data Collection
Three main data types were collected using different measuring

devices. Physiological parameters were measured by Empatica

E4 wristbands, while participants filled in questionnaires on their

smartphones for 15 working days. These ecological momentary

assessments (EMAs) were presented at random intervals through-

out the working day, roughly 90minutes apart, while an addi-

tional, longer questionnaire was offered in the evening, asking

about the day as a whole. The questions in each EMA session (a

set of questions) were selected from questionnaires that measure

different aspects of stress and related constructs, such as stress ap-

praisal, negative affect, job demand and job control. Smartphone

sensor data and phone usage data were continuously collected by

a self-developed Android application based on the AWARE frame-

work [9]. The contents of the questionnaires and the data types

collected have already been described in an extensive protocol

paper [6].

We collected the data of 56 participants, recruited from aca-

demic institutions in Belgium (29 participants) and Slovenia (26

participants). Only the data pertaining to 𝑁 = 55 participants

were complete, which included 26 women and 29 men. Their

mean age was 34.9 yearswith the range from 24 years to 63 years

and they held various positions in their institutions, such as PhD

students, employees in administration, and tenured professors.
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The participants adhered to the study protocol well. In their

participation period, each participant responded to more than 96

EMA sessions on average. The median time difference between

two subsequent workday EMA sessions was 93minutes, just a

bit over what was designed [12].

2.2 Classical Machine Learning Data Analysis
As the first step of the analysis, we followed a classical machine

learning approach for detecting stress (see Figure 3 in [2]). After

preprocessing, we calculated hand-crafted features. For phone

sensor data, we used a modified Reproducible Analysis Pipeline for
Data Streams (RAPIDS, [20]) library, which calculates behavioural
features using R, Python, and Snakemake [16] following a well-

defined set of rules (steps). For physiological data, we used our

in-house developed Python library, cr-features [11].

The data were aggregated on a daily basis, by averaging target

variables and calculating statistical physiological features that

were first calculated on short segments. Next, we standardized

the data within participants, i.e., by subtracting the daily mean

and dividing by daily standard deviation. Finally, we used a leave-

one-subject-out validation technique and tested various linear

(e.g., linear regression), non-linear (e.g., support vector regres-

sion) and ensemble machine learning techniques (e.g., ADA boost

regressor) from scikit-learn [17].

2.3 Variance Partitioning
Multilevel models (also known as mixed-effect, random-effect

or mixed models) are methods commonly used in medical, bio-

logical, and social sciences to analyse hierarchical (nested) data

[10]. Labels in our dataset are nested in at least three levels:

each participant collected data on multiple days and each day

included several measurements. We analysed self-perceived data

from questionnaires using mixed models in other publications [4,

5], while in this paper we use the related technique of variance

partitioning for exploring variability of the data at different levels.

Variance partitioning (or partitioning of sums of squared devia-

tions) can be used to ascribe the overall variability in a dataset to

different sources of variability. In multilevel models, this sources

can be different levels of analysis.

2.3.1 Simple Linear Regression. To model daily stress, we can

use linear regression in the following form:

𝑦 𝑗 = 𝛽0 + 𝛽1𝑥 𝑗1 + · · · + 𝛽𝑝𝑥 𝑗𝑝 + 𝜖 𝑗 (1)

Here, 𝑦 𝑗 represents the mean of the chosen indicator of stress

on a day 𝑗 , 𝛽0 is the intercept term,

{
𝑥 𝑗1, . . . , 𝑥 𝑗𝑝

}𝑛
𝑗=1

represent

daily values of 𝑝 features (or predictors),

{
𝛽1, . . . , 𝛽𝑝

}𝑛
𝑗=1

their

corresponding regression coefficients, while 𝜖 𝑗 is the error term

which captures all other factors related to variable 𝑦, which are

not described by the available features (predictors included in

the model). The index 𝑗 runs from 1 to 𝑛, where 𝑛 = 𝑁 × 𝑛𝑑 is

the product of the number of participants (𝑁 ) and the number of

days each one participated in the study (𝑛𝑑 ).

Aswe are interested in variance partitioning only, we can focus

on the intercept and omit all the predictor terms. Equation (1)

thus becomes:

𝑦 𝑗 = 𝛽0 + 𝜖 𝑗 (2)

In the context of machine learning, this is known as a baseline

or a dummy model, which predicts the same value for all days

and participants: the mean.

2.3.2 A Two-Level Model. To model the differences between

participants using a linear regression model, we can include

a personalized intercept term. The regression equation can be

described in two parts, where the first level is given by
1
:

𝑦𝑖 𝑗 = 𝛽𝑖0 + 𝜖𝑖 𝑗 (3)

Here, we are trying to predict the stress score for each day 𝑗 =

1, . . . , 𝑛𝑑 within each participant 𝑖 = 1, . . . , 𝑁 .

We model the intercepts as the sum of the overall intercept,

𝛾00 and person-specific intercepts, 𝑢𝑖0, also called the random

error component. The second level regression equation is given

by
2
:

𝛽𝑖0 = 𝛾00 + 𝑢𝑖0 (4)

2.3.3 A Three-Level Model. Since participants in our study an-

swered the EMA prompts repeatedly throughout the day, we

can add a third level of analysis, that is we consider within-day
variability. In this case, we are trying to predict the score for

each EMA session 𝑘 = 1, . . . , 𝑛𝑠 within each day 𝑗 within each

participant 𝑖 . This is a more fine-grained level of analysis and

includes many more instances, namely 𝑛 = 𝑁 × 𝑛𝑑 × 𝑛𝑠
Joining the expressions for all three levels of intercept, the

equation can be written as:

𝑦𝑖 𝑗𝑘 = 𝛽𝑖 𝑗0 + 𝜖𝑖 𝑗𝑘

=
(
𝛾𝑖00 + 𝑣𝑖 𝑗0

)
+ 𝜖𝑖 𝑗𝑘

=
(
(𝛿000 + 𝑢𝑖00) + 𝑣𝑖 𝑗0

)
+ 𝜖𝑖 𝑗𝑘 (5)

Now, the top level intercept, 𝛽𝑖 𝑗0 is composed of three different

components. The first one, 𝛿000, is fixed for all participants and

days, and it represents the overall intercept corresponding to the

mean of scores aggregated per EMA session. The other two are

random effects, where 𝑢𝑖00 is the person-specific intercept, while

𝑣𝑖 𝑗0 is the intercept specific to each day within each person.

3 RESULTS
3.1 Machine Learning on Daily Aggregated

Data
As described in Section 2.2, we followed a typical machine learn-

ing approach to detect daily stress. We chose negative affect as

an indicator for stress, which was measured with the Positive

and Negative Affect Schedule (PANAS, [22]). This is the most

commonly used questionnaire in similar diary studies looking at

daily measures of stress [13]. It is composed of a list of adjectives

describing emotional states, which are self-assessed on a scale

from 1 to 5.

This approach did not yield good predictions as shown in Fig. 1.

In fact, most of the models performed no better than the dummy

model, as evaluated by the median of the 𝑅2 metric across all

participants. Even when considering the individual rounds of the

leave-one-subject-out validation scheme, the best model (in this

case an instance of an XGBoost regressor) achieved a maximum

of 𝑅2 = 0.52. This corresponds to 52 % of explained variance for

that particular participant.

We considered modelling within-day stress as the natural next

step. However, this gives the possibility of processing the data

on the level of days, rather than only subjects. For example, stan-

dardization, feature selection, and model cross validation could

1
In general, this equation would include predictor terms, such as 𝛽𝑖1𝑥𝑖 𝑗1 , but they

are omitted for clarity as mentioned above.

2
Similarly, we could write the equation for person specific regression coefficients

as 𝛽1𝑖 = 𝛾10 +𝑢1𝑖 and also model person-specific predictors as 𝛾01𝑊𝑖 .
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ADA Boost regr.

XGBoost regr.

Random Forest regr.

Gaussian Process regr.

Kernel Ridge regr.

Support vector regr.
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Bayesian Ridge regr.

Lasso regr.

Ridge regr.

Linear regr.
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Figure 1: Median and maximum 𝑅2 value as achieved by
different regression methods in a leave-one-subject-out
validation scheme.

all be done on the lowest, daily level. To get an idea of whether a

more fine-grained analysis of the data might be warranted, we

turned to variance partitioning.

3.2 Sources of Variability
As mentioned in Section 2.2, the data for machine learning exper-

iments were standardized within participants, i.e., the normal-

ization was personalized. In multilevel modelling terms, this is

equivalent of introducing a participant random effect. By defining

an intercept-only linear mixed model using the lme4 library [3],

it turned out that the variance explained by these person-specific

intercepts was 𝜎2𝑢 = 0.20, which amounted to 57% of the total

variance.

The random effect of participants is illustrated in Figure 2. It

shows that the participants differ in how they evaluated their

negative affect. Their mean assessments are mostly distributed

within 1 point away from the overall mean, but some differed

from it by almost 2 points
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Figure 2: The offset of person random effects (roughly cor-
responding to person-specific means of daily stress) from
the main intercept effect (roughly corresponding to the
overall mean).

Next, we considered a three-level model with data aggregated

on an EMA session basis.Wemodelled a random effect by varying

the intercept among subjects and among days within subjects.

The variance that was explained by adding the day level was

𝜎2𝑣 = 0.08 or 11 % of the total variance. This is in addition to the

proportion of variance already explained at the subject-level, so

the total proportion of explained variance increased to 68 %.

This is also illustrated in Figure 3 which shows that individual

days differ from the overall mean by maximum of 1.5 points. On

the ordinal axis, the random effects are ordered by participant,

similarly to Fig. 2. Within participants, however, the data are or-

dered consecutively by date. This is manifested in the noisy struc-

ture of the confidence intervals as opposed to the monotonously

increasing random effects shown in red points.
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Figure 3: The offset of random effects of interaction terms
of person and day (roughly corresponding to person-day-
specificmeans of stress in one EMA session)main intercept
effect (roughly corresponding to the overall mean).

By including day-specific intercepts, this model performs sig-

nificantly better (𝜒2 = 509, 𝑝 < 0.001). We next consider what

that means in the context of machine learning.

4 DISCUSSION
When considering two sources of variability, the person and the

day level, we showed that much of the total variance can be

ascribed to within-person differences. This can be interpreted to

confirm the merit of personalized normalization of the data, but

other interpretations are also possible.

It should be noted that we only dealt with the target variable

in this work. Thus, variance partitioning does not help with

deciding whether to normalize independent variables. In general,

it is advised to normalize physiological data since there exists

inherent variability of physiological functioning in the general

population [18]. Similarly, explorative analysis indicated that

phone sensors vary across devices and it is also feasible to assume

that people’s phone usage varies significantly (independent of

their stress level).

For the target variable itself, the proportion of variance ex-

plained with within-person differences can be interpreted in at

least two ways. Either the participants were on average exposed

to different levels of stress and this is why their assessments differ

in a systematic way. Alternatively, participants can have differing

thresholds of evaluating something as stressful. Since the self-

reports are completely subjective, it is not possible to differentiate

between these two interpretations with the self-assessments as

labels. It would be possible to explore this further by taking phys-

iological measures as ground truth for stress and use them to

explain subjective measures. Treating the physiological measures

as universal is problematic, however, and they might not even

be related to stress deterministically. Physiological responses
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are not specific to different stress states, but rather a more com-

plex relationship exists between the stimuli, physiology, and the

parameters that control dynamics between them [7].

Finally, normalization is not at all the only option of removing

the person-specific variation.Methods such as linear discriminant

analysis offer ways that have been shown to perform better [1].

Including person-day random effects in the three-level model,

the intercept model performs better than the one with only per-

son random effects included. Following the same reasoning as for

the two level model, this could be interpreted that day-specific

normalization would be beneficial. There are several arguments

against this interpretation, however.

First, as indicated in Section 2.2, participants responded to

questionnaires 5 or 6 times a day. Standardizing with this lit-

tle data is dubious, while using such small samples for feature

selection or model validation is unacceptable. Second, the ques-

tionnaire data are not truly continuos, but in fact interval data

(at best) that can take 5 possible values. Since each EMA session

included only two items from each questionnaire, aggregating at

this level brings the number of possible values to only 9. Aggre-

gating on a daily level, however, summarises about 10 different

measurements, increasing the resolution to 0.1 point. This makes

daily means much closer to a continuous variable which can be

modelled by regression methods.

We can therefore argue that normalizing data by considering

each day as a separate unit is not appropriate. We can conclude,

however, that treating each EMA session as its own instance is

beneficial. As stated in Section 3.2, analysis on the EMA session

level can explain at least 11% of variance that is not captured

by the variability between participants. This conclusion is also

illustrated in Figs. 2 and 3: while the general pattern of random

effects shown by red points in Fig. 3 can already be sensed in

Fig. 2, the noisy structure of confidence intervals is noticeable

and worth exploring further.

5 CONCLUSIONS
Multilevel models are a well established method in medical, bio-

logical, and social sciences for analysing nested and longitudinal

data. In machine learning, research of comparable methods is

in its early stages [15]. Some tree-based methods are capable

of taking into account hierarchical (or clustered) nature of data,

such as MixRF [21], and least squares support vector machines

(LS-SVM) have been extended for handling longitudinal data,

resulting in a mixed effects LS-SVM [14].

The aim of this paper was not to build multilevel models,

statistical or machine learning ones, but rather use variance par-

titioning to explore how different levels of nested data can be

leveraged. We have shown that while standardization or simi-

lar techniques do not lend well to the lowest level due to small

sample size, restricting analysis to a higher level discards an im-

portant part of variance. In this way, variance partitioning can

help us build better machine learning models by enabling us to

systematically explore different levels of hierarchical data and

decide what data transformations to apply to each level.
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ABSTRACT
Understanding the relevant factors related to students’ academic
performance can help to construct a more precise methodology
for conducting successful academic life. Several studies examine
the relationship between students’ lives and academic perfor-
mances using statistical techniques with subjective responses
collected via questionnaires in the literature. In the last decade,
wearable devices, such as smartwatches and smartphones, have
gained popularity in the research community since they can pro-
vide objective measurements of the users’ activity, sleep, and
mood states with integrated sensors. It is possible to extract
markers related to individuals’ physiological and psychological
states. This study explores the most important factors from wear-
ables and questionnaires about students’ academic grades using
the NetHealth dataset. We utilize machine learning techniques,
specifically Random Forest, rather than classical statistical ana-
lyzes in literature. We believe that we contribute to interpreting
the underlying factors related to grade by examining objectively-
measured multi-modal datasets. We also focus on classifying the
grades with Random Forest and achieve overall 76% accuracy.
The most important factors affecting academic performance are
observed to be sleep, big five personalities, health, and mental
health.

KEYWORDS
Wearable computing, machine learning, multi-modality, well-
being, pervasive computing, student grades, behavioral patterns,
personality traits

1 INTRODUCTION
Understanding the underlying factors of academic performance
may help students to perform better throughout their academic
life. Many studies have investigated these factors affecting aca-
demic performance, including family history, psychological well-
being, and physical activity [1, 2, 3, 4]. Some approached the
situation from family history [1], and some focused on the ex-
istence of physical activity in the curriculum [2]. Also, some
studies considered sleep based on self-reported measures [3].
However, they are based on one modality, focusing on one factor
and trying to understand its effect on the target (i.e., students’
academic performance). This approach does not provide a meta-
understanding between different modalities. Thus, a multi-modal
approach is necessary to obtain a more expanded view.

This study focuses on multi-modal data analysis collected
from objectively measured wearable devices’ sensors and several
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surveys corresponding to the subject’s origin, sex, education level,
bad habits, as well as state-of-the-art sleep, big five, mental health
inventories (the details are given in Table 1). We aim explore the
factors affecting students’ academic performances.

We utilize the NetHealth open source data [5] which contains
students’ sleep routines, daily physical activities, communication
behaviors collected with mobile phones, and a detailed survey
about family history, living conditions, and personality. Data
related to sleep and activity is collected from wearable devices
and documented. We aim to find the relation between some of
the abovementioned aspects and academic performance.

We have a large dataset from different academic periods (waves)
and various survey data. However, the surveys were not filled
in every period, hence, we focused on one period with the least
amount of missing information. Before applying our models, we
performed a preprocessing procedure by imputing the data with
proper techniques to handle missing values and preparing them
for the final analysis. We utilized machine learning techniques,
specifically Random Forest (RF) algorithm, both for factor selec-
tion and classification. In addition, we provide essential parame-
ters for the student’s academic performance. These are related
to sleep, big five personalities, health, mental health, personal
information, and origin data in order. We believe that these in-
formation can be helpful in understanding affecting factors for
further improvement of student life to get better performance
during their academic life.

One of the essential contribution of our work is bringing dif-
ferent factors together and trying to produce a combination of
them. In that way, we aim to find the most important predictors
for students’ academic performance by combining other focus
areas, such as sleep, mental health, and activities, in the scope of
one study.

Considering the studies utilizing NetHealth data, some are
analyzing the data on different topics such as biometric-based
authentication [6], physical activity and sleep pattern [7]. There
are studies doing network analysis [8, 9], physical activity predic-
tion [10]. To the best of our knowledge, no similar study exists
among the listed papers.

The rest of the paper is organized as follows: In Section 2,
we explain state of the art on student grades studies and from
point of wearable domain. In Section 3, we explain dataset details
and the preprocessing steps for further analyses. In Section 4,
we present academic grade’s classification results with different
balancing strategies. We give factors for best case. Finally, in
Section 5, we discuss our findings with other future study ideas.

2 RELATEDWORKS
Many related works exist about student’s academical perfor-
mance from the point of different domains such as educational,
psychological and smartphone sensing [11, 12, 13, 14].

Objectively measured signals sensed from wearables applied
into the research field related to student’s mental health and
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academic performance, to the best of our knowledge, starts with
StudentLife [11] project.

In [12], authors collect the day-to-day and week-by-week
impact of workload on stress, sleep, activity, mood, sociability,
mental well-being and academic performance via smartphone
sensors. They examined strong correlations between smartphone
sensors and student’s mental health along with their academical
scores by not counting behavioral differences.

In [13], authors extracted related factors to the students aca-
demical grades from academic related behaviors, personality,
affect, stress, lifestyle and sensed behaviors with wearables. They
modelled behavior change points to capture individual’s behav-
iors while having the same final grade. One of the findings is
study duration has positive correlation with the final grade.

In [14], researchers examined the relation between wearable
device sensors and survey with student’s grade in a similar man-
ner. They used SVM with different kernel setups. They found
social features such as negative email contacts and negative inter-
actions are lower on students with high GPA. Also, accelerometer
sensor in wearables have an impact on discriminating the higher
and lower performants. This study is similar to our experiment,
where there is multi-modal data from wearable sensors and sur-
veys. We also examine the related factors on different datasets,
but our study also explores class balancing scenarios.

3 METHODOLOGY
3.1 Dataset
We utilized the NetHealth dataset1. It is collected from under-
graduate students from Notre Dame (ND) University between
Fall 2015 and Spring 2019. Thus, there are 8waves corresponding
to each semester. There are approximately 700 students’ data
from the 2015− 2017 period and 300 from the 2017− 2019 period
caused by the drops in participation. Data collection consists of
the social network, physical activity, sleep data from Fitbit wear-
able device, and ground truth data from questionnaires about
physical and mental health, social-psychological states, tastes,
and various self-reported behaviors, demographics, and back-
ground traits. The collection procedure is approved through IRB
protocols, and each participant has consented. Nevertheless, not
all data collection is publicly shared due to privacy concerns.

The details of the collected dataset per modality are as follows.
We performed our study with boldly-marked sub-datasets.

• Communication data: Collection of smartphone-based com-
munication logs data.

• Wearable data: Collected measurements regarding activ-
ity and sleep such as the number of steps, active minutes,
heart rate, sleep duration, sleep time, and awaken time
using Fitbit.

• Courses and grades data: Administrative records from
ND Registrar’s Office containing course and grade infor-
mation.

• Calendar: Weekly calendar showing the days about the
beginning of classes, break weeks, holidays, etc.

• Survey data: Self-reported questionnaires related to phys-
ical and mental health, social-psychological states, tastes,
and various self-reported behaviors, and demographics
and background traits.

1http://sites.nd.edu/nethealth/

• Network survey data: Interactions’ network data with the
related information such as relationship type, duration,
frequency of interaction, similarity, etc.

3.2 Preprocessing
As stated in Section 3.1, there are 8waves. Eachwave has different
survey questions and thus responses. For instance, in waves
1, 2, 3, 7, there are no questions related to stress, while in 4, 5, 6, 8,
there are. Similarly, sleep ground truth is not collected during
the study waves 5, 7. Thus, we chose to work on wave 1 as it
contains relatively higher responses than other waves.

Firstly, we constructed a sub-dataset from NetHealth concen-
trating on our purpose. The details are explained in Section 3.2.1.
Then, we prepossessed our data by deleting highly correlated
ones (in Section 3.2.3). Finally, we applied the Random Forest
algorithm for the rest of the study.

3.2.1 Dataset Preparation. As the dataset includes many differ-
ent data types, each of them has various parameters, we decided
which parameters to use before starting our study. We consid-
ered all parameters from wearable devices and course-grades
datasets. However, we selected some of the collected data from
the survey dataset. Surveys constitute, mainly, bad habits, big-five
personality inventory, education, exercise, health, mental health,
origin, personal information, sex, and sleep related answers. We
used only the summarizing parameters provided by the survey
for mental health, personal information, and sleep. We select
some parameters from the origin category manually. We used
the parameters of parents’ status, economic condition, number
of siblings, and religion. Table 1 gives the final list of utilized
parameters. At the end of the naming, some parameters have _1
indications, which relate to the measuring from wave1.

3.2.2 Handling Missing Values. Once the dataset was prepared
for analysis, we noticed missing values over columns. We pre-
ferred to keep these columns and impute them since they are
partially missed. We applied the most frequent imputation tech-
nique to the categorical ones and the mean imputation technique
to the numerical ones. However, there is enough correlation for
activity-related wearable data to use the KNN imputation tech-
nique. Thus, we used this technique. Finally, sleep data from
wearables did not contain any missing values.

3.2.3 Correlation. We checked the correlation between parame-
ters to reduce dimensionality. We deleted the ones which exhibit
higher than %80 correlations. These are cardiomins, fatburnmins,
lowrangemins, minsasleep, minsawake, peakmins parameters. We
can deduct the information related to them from other parame-
ters, for instance, cardiocals for cardiomins and fatburnmins. We
decided on the threshold value after many experiments. When
we increase it, we keep the highly correlated ones, and when we
decrease the threshold, more parameters will be deleted, which
causes unnecessary parameter loss. Eliminating them prevents
misleading results due to highly correlated features in detecting
interactions between different features. We had 93 parameters.
After removal of the 6 highly correlated ones, we have 87 features.

3.2.4 Target value’s distribution. In this study, we are working
towards the identification of important parameters and the appli-
cation of machine learning methods regarding students’ grades.
Thus, before starting the analysis, we examined target values,
i.e., student grades distribution, to observe whether there is class
imbalance. The distribution is in Figure 1. Here, it is seen that we
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Table 1: Details of the features

Dataset Measured Values

Wearable data
(Activity)

complypercent (percent minutes using Fitbit), meanrate (mean heart rate),
sdrate (st. dev. heart rate), steps, floors, sedentaryminutes,

lightlyactiveminutes, fairlyactiveminutes, veryactiveminutes,
lowrangemins (low range minutes), fatburnmins, cardiomins,

peakmins, lowrangecal, fatburncal, cardiocal, peakcal

Wearable data
(Sleep)

timetobed (time went to bed), timeoutofbed (time out of bed),
bedtimedur (minutues in bed in minutes), minstofallasleep (minutes to fall asleep),

minsafterwakeup (minutes in bed after waking), minsasleep (minutes asleep),
minsawake (minutes awake during sleep period),
Efficiency (minsasleep/(minsasleep + minsawake)

Courses and grades AcademicPeriod, CourseReferenceNumber, FinalGrade

Survey data
(Bad habits)

usetobacco_1 (used tobacco), usebeer_1 (drank beer), usewine_1 (drank wine or liquor),
usedrugs_1 (used rec drugs like marij. or cocaine),

usedrugs_prescr_1 (used presc. drugs not prescribed),
usecaffine_1 (drank caffenated drinks)

Survey data
(BigFive/Personal inventory)

Extraversion_1, Agreeableness_1, Conscientiousness_1,
Neuroticism_1, Openness_1

Survey data
(Education)

hs_1 (high school type), hssex_1 (high school sex composition),
hsgrade_1 (high school average grade), apexams_1 (# of hs ap exams),

degreeintent_1 (highest intended degree), hrswork_1 (paid hours senior year),
ndfirst_1 (Notre Dame first choice of applied colleges?)

Survey data
(Exercise)

hsclubrc_1 (club activities), exercise_1 (excersise),
clubsports_1 (play club, intramural or rec sports) ,

varsitysports_1 (play varsity sports), swimming_1 (swim),
Dieting_1 (special type of diet), PhysicalDisability_1 (physical disability)

Survey data
(Health)

SelfEsteem_1 (on the whole, I am satisfied with myself), Trust_1 (most people can be trusted),
SRQE_Ext_1 (external self-regulation (exercise)),

SRQE_Introj_1 (introjective self-regulation (exercise)),
SRQE_Ident_1(identified self-regulation (exercise),
SelfEff_exercise_scale_1 (when i am feeling tired),
SelfEff_diet_scale_1 (self_efficacy score (diet items)),

selfreg_scale_1 (i have trouble making plans to help me reach my goals)

Survey data
(Mental health)

STAITraitTotal_1 (state_trait anxiety score), CESDOverall_1 (CES depression score),
BAIsum_1 (beck anxiety score), STAITraitGroup_1 (state_trait anxiety 2 category),

CESDGroup_1 (CES depression - 2 categories), BAIgroup_1 (beck anxiety (3 category)),
majorevent_1 (life changes)

Survey data
(Origin)

momdec_1 (is your mother deceased?), momusa_1 (was mother born outside usa?),
daddec_1 (is your dad deceased?), dadusa_1 (was your dad born outside usa?),

parentstatus_1 (parents living together or divorced/living apart),
dadage_1 (father’s age), momage_1 (mom’s age), numsib_1 (number of siblings),

birthorder_1 (which # in birth order are you?), parentincome_1 (parent’s total income last year),
parenteduc_1 (combined parent education), momrace_1 (mother’s race), dadrace_1 (father’s race),

momrelig_1 (mother’s religious preference), dadrelig_1 (father’s religious preference),
yourelig_1 (your religious prefence)

Survey data
(Personal info)

selsa_rom_1 (romantic loneliness),
selsa_fam_1 (family loneliness),
selsa_soc_1 (social loneliness)

Survey data (Sex) gender_1 (gender)

Survey data
(Sleep)

PSQI_duration_1 (computed time in bed), PSQIGlobal_1 (PSQI total score),
PSQIGroup_1 (PSQI two categories),

MEQTotal_1 (MEQ (chronotype) score - high score morning person),
MEQGroup_1 (MEQ (chronotype) groups - 5 categories))

have A grade on the majority, and we have very few instances
from the B-, C+, C, C- classes. More specifically, we have 41856,
19321, 10048, 7265, 2526, 1617, 1258, 354, 4346 from classes A,
A-, B+, B, B-, C+, C, C-, S (satisfactory), respectively. To well clas-
sify minority classes, we applied the SMOTE (synthetic minority
over-sampling) technique to produce synthetic data by keeping

the same class distribution [15]. After SMOTE, we got 41856
instances from each class.
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Figure 1: Target value distribution: Grade

3.3 Model details and performance metrics
As a classification method, we used RF algorithm because it is
an ensemble method and performs better than the other used
methods in literature in this domain [16]. The used parameters
for RF are n estimators 1000, criterion Gini, and max features
sqrt from scikit-learn toolkit2. %75 and %25 train and test sizes
are chosen, respectively.

4 CLASSIFICATION PERFORMANCE
EVALUATION

Since our target variable is already categorical, we used the
dataset after preprocessing without any other change in the
classification task. In Table 2, we present f1-score details of each
class performance and the global average of the f1-scores with
the accuracy metric. We obtained %76 average accuracy. We see
that the best performances are achieved for the classes B-, C+, C-,
S. Before SMOTE application, it was %65 average accuracy; fur-
thermore, we had lower f1 scores for these indicated classes, but
we did not present the details due to the page limit. The confused
instances may be observed in Figure 2. For instance, A class is
confused mostly with A+ with an important ratio. It is expected
since these are very close classes. The class S is mostly confused
with others. It can be interpreted as expected since a satisfac-
tory result corresponds to passing the course. SMOTE generates
instances based on a similarity measurement rather than replicat-
ing existing ones. Thus, the bias is relatively lower compared to
simple replications of instances since these are newly generated
ones. Nevertheless, we also applied the under-sampling strategy
and down-sampled higher class instances to be equal to the class
with fewer instances. Thus, we obtained 354 instances for each
class. When we applied RF to that data, we obtained even worse
performance, which is 47% average accuracy. It is expected since
we deleted most data points, so learning with few instances led
to lower results.

In addition, in Figure 3, we provide the most critical factors
to obtain this classification performance by calculating the most
important 20 parameters via RF feature selection. The order is
following: MEQTotal (sleep), Trust (health), Extraversion (big five),
selsa_soc (personal info), selsa_rom (personal info), Openness (big
five), Neuroticism (big five), SRQE_Ext (health), dadage (origin),
PSQI_duration (sleep), PSQIGlobal (sleep), BAISum (mental health),
hsgrade (education), SRQE_Introj (health), CESDOverall (mental
health), SelfEff_exercise_scale (health), Agreeableness (big five),
momage (origin), MEQGroup (sleep). The explanation of these
parameters is presented in Table 1. We can interpret this result
as the most important factors arrive from survey datasets. The
important sub-surveys are sleep, big five, health, mental health,
personal information, and origin.

2https://scikit-learn.org/stable/

Table 2: Classification performance details

precision recall f1-score support

A 0.53 0.56 0.55 10434
A- 0.52 0.44 0.47 10410
B 0.66 0.71 0.68 10449

B+ 0.67 0.60 0.63 10507
B- 0.85 0.87 0.86 10507
C 0.89 0.92 0.91 10494

C+ 0.88 0.89 0.88 10418
C- 0.98 0.98 0.98 10502
S 0.78 0.83 0.80 10455

accuracy 0.76 94176
macro avg 0.75 0.75 0.75 94176

weighted avg 0.75 0.76 0.75 94176

Figure 2: Confusion Matrix

Figure 3: Feature Importance for Classification

5 DISCUSSION AND CONCLUSION
In this study, we applied a machine learning technique, RF, to
see how accurately we can classify and predict students’ grades
using surveys and wearable data. In addition, we extract the most
important factors affecting the model’s performance. Results
indicate sleep, big five, health, mental health, personal information,
and origin survey parameters have higher effects on performance.
We differ from state-of-the-art [12, 13, 14] by applying SMOTE.

For further research, one may examine other waves since there
are 8 to obtain more instances from each class. Also, since the
dataset is collected from one of the top University students, it
is expected to have higher grades, i.e., A, A+. Thus, applying a
similar experimental data collection setup to students with lower
performances in the courses may be helpful.
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ABSTRACT
Postpartum anemia is seen as a health problem and should be

treated. We evaluate performance of nine machine learning re-

gression models in predicting the postpartum anemia six weeks

after childbirth.We focus on tree key parameters: ferritin, haemoglobin,

and transferrin saturation. Our models are compared with the

baseline model, which always predicts the mean value of the

training data. We found that the models for ferritin and trans-

ferrin saturation have good predictive performances, whereas

this was not the case for haemoglobin prediction, as all of the

implemented models were outperformed by the baseline model.

KEYWORDS
postpartum anemia, haemoglobin level, machine learning

1 INTRODUCTION
Postpartum anemia is a common maternal health problem glob-

ally and constitutes a significant health problem in women after

birth, even in the developed world. Women may develop it either

because of antepartum depletion of iron stores or peripartum

excessive blood loss [1]. It is associated with several negative con-

sequences, such as maternal fatigue [2, 3]. With the unacceptably

high prevalence of anaemia in women after childbirth in both,

up to 50% in developed and up to 80% in developing countries [4],

it appears to be of great importance to treat iron deficiency effec-

tively. Ferrum sulphate perorally is the most commonly used iron

for pospartum anemia because of its low cost and simple use. Def-

inition of postpartum anaemia rely on haemoglobin values alone,

defined as Hb level <100 g/L. Postpartum haemorrhage defined as

a blood loss of 500 ml or more within 24 hours after birth is one of

the most frequent complications of delivery. This makes women

vulnerable and frequently results in postpartum anemia. Conse-

quently, this increases the risk for a peripartum blood transfusion,

a treatment with potential severe adverse outcomes [5]. With the
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unacceptably high prevalence of anaemia in women after child-

birth in both, up to 50% in developed and up to 80% in developing

countries [4], it appears to be of great importance to treat iron

deficiency effectively. In addition to the increased transfusion

risk, peripartum iron deficiency anaemia can affect the wellbeing

of both the mother and child. It causes cardiovascular symp-

toms like palpitations and dizziness, breathlessness. It increases

a risk of infections as well as excessive postpartum bleeding. Fur-

thermore, postpartum anemia adversely affects maternal mood,

cognition, and behavior resulting in increased fatigue, reduced

physical and mental performance [6]. This is associated with

several negative consequences, such as impaired health-related

quality of life [3]. Impaired health-related quality of life linked

to postpartum anemia include depression, fatigue, and reduced

cognitive abilities. All of these symptoms significantly interferes

with mother-child interactions and impact a woman’s ability to

breastfeed [1].

Postpartum anemia should be treated by restoring iron stores.

Although there is a number of treatment options for women with

postpartum anaemia, the debate about iron supplementation and

the ideal form of administration is ongoing and is not universal

in all countries. Currently, common treatment includes iron sup-

plementation administered orally or intravenouslly (IV). The tra-

ditional treatment for mild to moderate iron deficiency anaemia

is oral supplementation of iron with iron sulfate perorally be-

cause of its low cost and simple use. There are advantages and

disadvantages of either of the two approaches, which we will not

go into detail here. Since the postpartum anaemia contributes

to a major healthcare problem even in developed countries, it

is important to treat it efficiently [7]. However, IV iron may be

preferred because the non-compliance and absorption challenges

of oral iron, but it includes increased drug costs and the need for

supervised treatment in healtcare institutions. Recent robust stud-

ies have compared different iron preparations and there has been

a network meta-analysis of different iron medications. However,

no randomized clinical trial has directly compared intravenous

derisomaltosie, intravenous carboxymaltose and peroral ferrous

sulphate for treatment of postpartum anemia, including fatigue

measurements.

In this paper, we address the question on predicting the post-

partum anemia six weeks after childbirth. We look at three key

parameters from blood tests that are related to anemia, namely
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Table 1: Dataset features.

Personal Blood test

Age [years] Haemoglobin [g/L]

Gestational age [weeks] Serum iron [𝜇mol/L]

Number of children born TIBC [𝜇gmol/L]

Number of total pregnancies Transferrin saturation [%]

Number of total childbirths Ferritin [𝜇g/L]

Number of total abortions Phosphate [mg/dL]

Type of childbirth CRP [mg/L]

Transfusion

Marital status

Education

BMI before childbirth

BMI after childbirth

Medication

the ferritin, haemoglobin, and transferrin saturation. Using a

database containing 296 patients that were diagnosed with ane-

mia, we investigate the possibilities to predict these relevant

blood test values using machine-learning models. We present the

results of our initial studies.

2 DATA
The initial dataset included 296 patients that were diagnosed

with anemia and 27 features that had some missing values. As

this was our initial study, we did not perform any missing data

inputation, but rather dropped the patients that had missing

values in any of the columns. We were left with 224 patients that

had data for all 27 features. Based on the medications that the

patients were given during their treatment, they can be separated

in three groups: 80 of the patients were treated with Iroprem, 75

were treated with Monofer, and 69 were treated with Tardyfer.

Both Monofer and Iroprem are IV medications with iron, while

Tardyfer is administered orally as tablets.

The data included personal data and blood test results. Blood

tests were performed both right after the childbirth as well as six

weeks after. The list of personal and blood test features is given

in Table 1.

In the dataset, there are 13 personal features and 2 ·7 blood test
features. Among personal features, gestational age corresponds

the number of weeks since the last period. The type of child-

birth is a categorical variable and can either be vaginal delivery,

planned Cesarean section, or elective Cesarean section. Trans-

fusion is a binary variable indicating whether a patient needed

a blood transfusion after the childbirth or not. Marital status

is a categorical variable and can either be lives alone, married,

or non-marital partnership. Education is ordinal variable of 10

different values with the lowest representing elementary school

education and the highest representing a doctoral degree. Lastly,

BMI stands for body mass index.

In the blood test features, serum iron describes the amount

of iron in the blood. TIBC stands for total iron binding capacity,

which is a good indicator of the amount of iron in blood. If the iron

level in blood is low, the TIBC is higher as the free capacity for

binding of the iron is higher. Transferrin saturation is the value

of serum iron divided by the TIBC of the available transferrin.

The higher the transferrin saturation, the bigger the iron stores

in the body. Lastly, CRP stands for C-reactive protein, which

is high is there is inflammation in the body. Inflammation can

also be cause as a consequence of an injury during childbirth

or Cesarean section. Typically, CRP levels are increased after

childbirth. If the high level of CRP (>8 mg/L) still persists after

six weeks after the childbirth, this indicates inflammation.

3 METHODOLOGY
The aim of this initial study was to evaluate the performance of

several machine learning (ML) models in predicting the values of

haemoglobin, ferritin, and transferrin saturation levels in blood

of the anemia patients six weeks after childbirth, as these parame-

ters are related to anemia. The input of the models were personal

features and the features of the blood test immediately after the

childbirth. In each experiment, only one of the three quantities

was the output. Thus, we ran three experiments with the same

input and different outputs. Additionally, we ran additional sep-

arate experiments for each of the three medication groups. We

compared our results with the baseline, which always predicted

the mean output value of the training data.

4 RESULTS
Our dataset included 224 patients with 20 predictor features. We

usedmean absolute error (MAE), rootmean squared error (RMSE),

and mean absolute percentage error (MAPE) as the evaluation

metrics, with MAE as the main metric of performance evaluation.

Formulas for calculation of MAE, RMSE , and MAPE are given in

equations (1), (2), and (3). Parameter 𝑦𝑖 denotes predicted values,

𝑥𝑖 denotes true values, and 𝑛 denotes the total number of data

points.

𝑀𝐴𝐸 =

∑𝑛
𝑖=1 |𝑦𝑖 − 𝑥𝑖 |

𝑛
(1)

𝑅𝑀𝑆𝐸 =

√︄∑𝑛
𝑖=1 (𝑦𝑖 − 𝑥𝑖 )2

𝑛
(2)

𝑀𝐴𝑃𝐸 =
1

𝑛

𝑛∑︁
𝑖=1

����𝑥𝑖 − 𝑦𝑖

𝑥𝑖

���� (3)

We implemented nine ML regression models. Regression mod-

els predict a continuous variable(s). Linear regression (LR), Kernel

Ridge (KR), and elastic net regression (EN) find linear correla-

tions between the predictor features and the output. Bayesian

ridge regression (BR) formulates linear regression using proba-

bility distributions rather than point estimates. Support vector

regression (SVR) finds a hyper-plane in the feature space that has

maximum number of data points. Gradient boosting regressor

(GB), Light gradient boosting machine (LGBM), extreme grad-

ing boosting regressor (XGB), and CatBoost regressor (CB) are

ensemble methods that combine the predictions of multiple deci-

sion tree regressors. A decision tree regressor uses a tree diagram

for decision making, where each branch is partitioned based on

a threshold for a predictor feature.

The models trained on the whole dataset were compared in a

10-fold cross validation with the folds stratified with respect to

the medication. The models trained for separate medication only

were compared in a 5-fold cross validation due to the smaller

dataset size. For each of the output variables, we also show a his-

togram of values distribution along with the mean and standard

deviation (SD).

The models’ training and performance evaluation was done

using Python 3.7 and libraries Numpy 1.18.5 [8], Scikit 0.24.2 [9],

LightGBM 3.2.1 [10], XGBoost 1.4.2 [11], and CatBoost 0.26 [12].
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4.1 Ferritin
Distribution of ferritin blood levels six weeks after childbirth

is given in Figure 1. We see that the patients that were given

medication Tardyfer had significantly lower levels than those

that were given medications Iroprem or Monofer. The mean and

SD values of the distribution are 185.88 𝜇g/L and 141.31 𝜇g/L,

respectively. Results of the regression models are given in Table

2.

Figure 1: Distribution of ferritin blood levels in patients
six weeks after childbirth.

Table 2: Results for the prediction of ferritin.

Model MAE RMSE MAPE [10
−2
]

CB 61.96 87.44 80.11

XGB 62.76 93.97 61.23
LGBM 63.07 88.31 65.88

GB 64.14 91.32 83.86

LR 68.42 89.45 86.26

KR 69.3 90.62 80.2

EN 79.64 99.56 158.81

BR 80.43 101.93 135.88

Baseline 111.81 138.88 272.51

SVR 112.91 140.25 260.76

We see that the best performing model according to both

metrics was the CB. Except for the SVR, other models have had

similar performances to that of CB. Additionally, we see that

most of the models significantly outperform the baseline.

The results of the models performance of predictions for sepa-

rate medications only are shown in Table 3. The models within

eachmedication have similar performances. In the case ofMonofer,

all of the models’ performances are worse than that of the base-

line.

4.2 Haemoglobin
Distribution of haemoglobin blood levels six weeks after child-

birth is given in Figure 2. We see that the distributions are very

similar between all three medication groups. The mean and SD

values of the distribution are 133.87 g/L and 8.10 g/L, respectively.

Results are given in Tables 4 and 5.

Table 3: Results for the prediction of ferritin for each med-
ication separately.

Model Iroprem MAE Monofer MAE Tardyfer MAE

LR 93.65 70.85 41.33

LGBM 86.19 57.03 21.74

XGB 95.48 62.44 19.43

CB 81.26 58.78 20.48

KR 98.90 69.93 33.11

EN 92.76 63.77 31.81

BR 96.24 61.47 21.99

GB 88.37 70.00 25.69

SVR 97.41 58.20 19.27
Baseline 94.61 55.87 23.42

Figure 2: Distribution of haemoglobin blood levels in pa-
tients six weeks after childbirth.

Table 4: Results for the prediction of haemoglobin.

Model MAE RMSE MAPE [10
−2
]

Baseline 6.11 8 4.62
BR 6.31 8 4.77

SVR 6.33 8.01 4.80

EN 6.56 8.22 4.96

LR 6.67 8.41 5.03

CB 6.74 8.34 5.10

LGBM 7.16 8.93 5.41

XGB 7.2 9.19 5.44

GB 7.28 9.03 5.52

KR 7.43 9.45 5.59

We see that the models do not perform well in predicting

haemoglobin, as they perform worse than the baseline for both

the general case and the separate medication cases.

4.3 Transferrin saturation
Distribution of transferrin saturation in blood six weeks after

childbirth is given in Figure 3. We see that the distributions are

very similar between all three medication groups. The mean and

SD values of the distribution are 33.56 % and 11.53 %, respectively.

Results of the regression models are given in Table 6.
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Table 5: Results for the prediction of haemoglobin for each
medication separately.

Model Iroprem MAE Monofer MAE Tardyfer MAE

LR 6.99 7.04 8.17

LGBM 5.46 6.41 8.21

XGB 6.38 6.58 9.20

CB 5.75 6.58 8.03

KR 7.65 7.13 8.63

EN 5.69 6.43 7.36

BR 5.31 6.45 7.33

GB 5.79 7.23 9.41

SVR 5.42 6.62 7.28

Baseline 5.17 5.85 7.22

Figure 3: Distribution of transferrin saturation in blood of
patients six weeks after childbirth.

Table 6: Results for the prediction of transferrin saturation.

Model MAE RMSE MAPE [10
−2
]

KR 8.74 10.93 36.74
LR 8.78 10.97 36.80

EN 8.82 11.14 38.45

Baseline 8.88 11.12 39.16

SVR 9.11 11.38 39.51

CB 9.11 11.31 38.81

BR 9.22 11.41 40.49

GB 9.51 11.89 40.20

LGBM 9.55 12.10 39.58

XGB 9.62 12.11 39.64

We see that the top three performing models outperform the

baseline, with the best model being the KR. The results of the

models performance of predictions for separate medications only

are shown in Table 7. Unlike Monofer and Tardyfer, the models

do not perform well in the case of Iroprem.

5 DISCUSSION AND CONCLUSION
We evaluated nine classic machine learning regression models for

the prediction of three key parameters associated with anaemia

collected from blood tests six weeks after childbirth: ferritin,

Table 7: Results for the prediction of transferrin saturation
for each medication separately.

Model Iroprem MAE Monofer MAE Tardyfer MAE

LR 7.68 9.4 11.84

LGBM 7.16 7.59 11.39

XGB 8.36 9.12 12.86

CB 7.2 7.87 11.44

KR 7.73 8.94 12.01

EN 7.16 8.54 11.24
BR 6.8 7.83 12.02

GB 7.88 8.78 11.61

SVR 6.94 7.62 11.62

Baseline 6.49 7.75 11.82

haemoglobin, and transferrin saturation.We compared the results

with the baseline model, which always predicted the output mean

of the training data. We found that the models for ferritin and

transferrin saturation had good predictive performance, whereas

this was not the case for haemoglobin prediction, as all models

were outperformed by the baseline model.
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ABSTRACT  
Testing for Covid, in a time of pandemic, can put a lot of overhead on 
the medical and testing facilities. Moreso, in a pandemic crisis, people 
become more hypochondriacs and get tested even if a slightest 
symptom of Covid is detected. This leads to many people, infected and 
not infected, to gather at the medical facilities, thus increasing the 
possibility for not infected people to get Covid infection. Our 
application registers patients and, by using a medical survey, 
determines if the patient is supposed to get tested for Covid or even 
more severe measure are to be taken. Additionally, our application uses 
medical tests results from patients to determine the success rate of the 
prediction. The case study has shown that the application has 89% 
success rate of classification. Using this application, only people with 
the right symptoms will be advised to get tested, thus lowering the 
overload placed on the medical facilities and minimizing the virus 
spread. 

KEYWORDS  
analysis, classification, Covid, survey, symptoms, test cases 

1  Introduction  
Although world-wide pandemics are not that often, yet Covid 

pandemic hit the world fast, with many patients dying and doctors not 
being able to understand the cause in time. The aftereffect of the 
pandemic has left many people with health issues with more and more 
people becoming hypochondriacs. Technology was and is still used to 
alleviate the hit from the virus and help prevent the spread of the corona 
virus and maintain the current lifestyle as much as possible. On the other 
side, technology was used to help fight against the virus and return life 
to its original form.  

A lot of research has been done on the Covid virus and Corona 
outbreak, including image processing, machine learning and so on. In 
[1], they give a summary of the different machine learning techniques 
to predict and classify covid-19 cases. They are using mathematical 
models and machine learning to predict Covid-19 cases. The authors in 
[2], have further used machine learning and image processing to 
determine the cause of pneumonia in covid-19 infected patients. They 
are using X-rays and CT images to create a software to determine how 
to classify patients based on pneumonia and Covid-19 images.  

The machine learning approach is also used in most papers but in 
[3], authors are trying to investigate the best possible options and weight 
distribution in the ML techniques to get the best results when working 

with Covid-19 data. They are using different approaches to get the best 
results when combining ML and Covid. Furthermore, [4] is again using 
CT scans and ML to classify patients as infectious or not, which would 
be useful to decrease infection spread amongst the population.  

Much like in [1], authors in [5] are helping other authors with an 
overview of the ML techniques. Additionally, they are offering data sets 
to help with the further investigation. The research done in [1] and [5], 
coupled with the research in [6], gives authors the means, the 
knowledge, the data set and the information on how to proceed with the 
research for covid and ML. The research in [6] evaluates all the data 
and the publishing process of papers regarding Covid and ML and how 
the publication process changes the initial paper submission.  

Further analysis is done in [7] about covid detection and CT images 
using a pre-trained data set that can help classify the new data set before 
training and testing using deep learning and multi-layered convolution 
algorithms. This way, the data set can be increased and overcome the 
persisting problem of ML with not having enough data to perform the 
training and testing. The overall analysis of all the research in ML and 
data set is concluded by the authors in [8], where they give a detailed 
analysis of the functions and usage of ML and Covid. 

There is a lot of research of Machine Learning/Deep Learning 
techniques to detect Covid using medical images. Our approach is 
simpler and uses medical questionnaires and human input to improve 
the detection of Covid 19 in patients. The architecture of our Covid 
Medical App system is described in Section 2, whereas the behavior 
and case scenarios are described in Section 3. Section 4 concludes the 
paper and gives information about further development. 

2 Architecture of the system 
The Covid Medial Application is designed to help patients and the 

health system by classifying patients into six categories. These 
categories range from the patient not having Covid (or the least suspect 
of a Covid infection), to an almost certain Covid infection (requires 
isolation and medical treatment). The users of the applications are 
taking a short survey (questionnaire) about their wellbeing and 
symptoms, and the result of the questionnaire is the classification of the 
user into one of categories [9]. The application accesses the survey from 
an API that is standardized and provided by the InferMedica Medical 
Platform, implemented and approved by World Health Organization 
(WHO). The API contains all sorts of Covid data that can be retrieved 
and many surveys the users can take, our application utilizes only the 
API for classification of Covid, which is done based on symptoms and 
patient’s wellbeing.  

Besides all the Covid recommendations and information that is 
displayed in the application, the users can take the survey and find out, 
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based on their symptoms, in which category they belong. The categories 
are:  

• No risk – the patient is the least likely to have Covid 

• Self-monitoring – the patient should continue to monitor 
the symptoms but is not likely to have Covid 

• Call a doctor – there is an infection, but it is not Covid-
related 

• Quarantine – the patient is advised to quarantine himself 
from the environment and perform Covid tests 

• Isolation call – the person should isolate themselves from 
the environment with high probability for Covid infection 

• Isolation ambulance – the person has high probability for 
Covid infection and should call for ambulance since the 
symptoms are severe.  

 The architecture and the organization of the application is presented 
on Figure 1.  

 
Figure 1 Organization of the application 
 

 

On Figure 1 we can see that our application is a wrapper around 
the API provided from InferMedica, which first and foremost, provides 
a human readable survey that patients can take and classify their 
symptoms into a category. The questionnaire helps patients with 
symptoms of Covid to determine the best possible action to take, in 
case they are suspecting Covid infection. Users of the application 
access it via web link, where users can get Covid-related information, 
access their profile and take the questionnaire. The questionnaire taken 
from a patient is packed, formatted and sent to the API, the API returns 
the result, which is displayed back to the patient.  

As presented on Figure 1, we can see that the application uses two 
APIs from InferMedica. The first API is diagnosis endpoint, that we 
use to obtain the questions to form the questionnaire. These questions 
are predetermined, can easily be translated into any language, and be 
adapted if the questionnaire changes from the endpoint. The second 
API is the triage endpoint that is used to perform the diagnosis and 
classification of the patient. Also, the result returns a short info status 
that is presented to the patient with information about how to proceed 

with the diagnosis and recommendations. This information can also be 
easily translated and wrapped.  

 
Patients that might have higher risk of Covid infection (placed in 

that category by the API) can isolate themselves in time to prevent 
others to be infected. Furthermore, the entire pandemic made many 
patients hypochondriacs and suspect Covid symptoms even for a small 
cough. Thus, by using this application, if they get classified in no 
Covid infection categories, uninfected patients can avoid going to the 
hospitals for unnecessary Covid tests, and reducing the possibility to 
get infected in the testing areas.  

 
On the figure below (Figure 2), we can see a part of the survey 

interface and the questions that the users have to answer to be classified 
in the categories.  

 

 
Figure 2 Questions from the survey (multipart) 
 

The series of questions can vary from input fields for body 
temperature measured or blood pressure, to multiple choice questions 
and Yes/No questions. The requirements from the questionnaire are 
simple and easily understandable that every patient can answer even if 
with severe health issues. The interface is adjusted and simplified as to 
not impose any incorrect information that could lead to a faulty 
classification.  

On Figure 3 we can see a list of results that the patient received, as 
a result of the survey. From Figure 3, we can see that the information 
is presented in different color based on the severity of the 
classification, followed by a short information summary intended for 
the classification. The patient can take the questionnaire multiple 
times, and each result is marked and presented to the user with the date 
and time of the questionnaire  taken and the result.  

 
Figure 3 Result of the classification 
 

On the other hand, medical personnel also have access to these 
classifications, but only to patients that they have been assigned to. 
Based on the outcome of the classification, the medical personnel can 
schedule an appointment for testing or send an ambulance to the 
appointed address. The panel of the medical personnel is similar to the 
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one of the patient’s, except it additionally displays the information of 
the patient that took the survey and contact information.  

3 Evaluation of the system 
 

Each medical classification system cannot guarantee a faultless 
classification method, so there is always a chance that the classification 
might not be correct. If there are numerous of medical tests and 
findings, a different doctor might give a different diagnosis and 
classification of a patient’s condition. Even more so in our case, where 
we are using a questionnaire to classify a patient in a six different Covid 
categories, it gives a rough classification as a basic step of the diagnosis. 
The questionnaire, as stated before, is taken from Infermedica, which 
was previously issued by the WHO, but it is not something that can be 
used with absolute certainty and fully depended upon. That is why, in 
this section of the paper, we are also making an evaluation of the results 
of the questionnaire.  

Our medical application allows users to take a Covid survey based 
on their symptoms and be classified into categories of high to low Covid 
infection. Alongside with the classification, a short information is 
presented on how to proceed with their result and how to minimize 
further infection on other patients. The survey, as stated before, is 
intended to keep patients with low risk of infection to visit Covid testing 
places in order to avoid getting infected. Also, by advising patients with 
low possibility of Covid infection to not get tested, reduces crowding 
the medical facilities and Covid test centers, thus reducing overhead of 
the medical system. However, patients can still ignore the results from 
our application and get tested to make sure if they have Covid or not.  

The case study of the API and our application was conducted with 
20 patients who already have been tested with Polymerase Chain 
Reaction (PCR) test for Covid in the past. More than half of the patients 
(15 of them) have been tested twice for Covid, thus the total number of 
test cases is 35. The patients already had the diagnosis for Covid from 
their PCR test before the survey was taken on our application. After 
which, we have compared the results from the survey with the results 
from the PCR tests of the patients. The results from the case study are 
presented on Figure 4.  

 
 
Figure 4 Results from the case study of our application with 35 tests 
 
On Figure 4 we can see the results from our application (shown with 
blue bars) and the results from the PCR tests (shown with orange bars). 
As we can see from the results, the PCR and the application bars are 
mostly the same. The deviation in the PCR and the application results 
are mostly in categories one, two and three. The most common error is 
when the API suggests category one, but the PCR shows category 
three. This error is minimal since the first three categories are linked 
with low to no infection. The next frequent error is in the last two 
categories, when the API suggests category five, but the PCR suggests 
category six and vice versa. If we put the results of the questionnaire 
in binary form (the patient has Covid or the patient doesn’t have 
Covid), the first three categories will form the result that the patient 
doesn’t have Covid, whereas the last three categories will form the 
result that the patient has Covid. If the categories are binary, the error 
between the API and the PCR is close to zero. The minimal diversion 
is detected in the subcategories presented by the questionnaire. Also, 
the PCR gives information as to whether the patient has or hasn’t got 
Covid, the subcategorizing is done based on hospitalization of the 
patient and the recommendations received from their doctor.  
If we consider the six categories offered by the API, the overall success 
rate of the API, compared with the PCR tests is at 85% of accurate 

prediction and classification. If we consider the binary classification, 
the success rate of the API is increased to 89%.  

4 Conclusion 
    Our application tends to use a simplified system for online diagnosis 
of Covid patients that uses questionnaire designed to give initial 
diagnosis of the patient. This initial diagnosis is used to give patients 
information as to whether they have Covid or not and to suggest testing 
and medical care, only if necessary, thus reducing the overhead on the 
testing places and the medical facilities from patients that are with low 
risk or no infection at all. The case study in section III shows that the 
questionnaire is accurate enough to give initial diagnosis and sufficient 
enough to determine if the patient has Covid or not with 89% accuracy.  
     
    For future work we propose testing the system with patients before 
they go to the hospital or testing facilities for Covid. The user can 
update the results of the API with the results from the medical/test 
facilities. This can be done by result category, and the system can 
present the accuracy of the API result next to the result. Thus, users 
can get classified into the categories, but also receive accuracy 
information provided by users of the application that have been 
classified and afterwards tested.  
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ABSTRACT 

The SI4CARE project is aiming to develop a strategy and action 

plans to improve health and social care in the Adriatic-Ionian 

region. It started with surveying the state of affairs in the region, 

identifying needs and challenges, as well as best practices that 

can answer them. Based on these, wishes for improvement were 

formulated. The paper describes the methodology of this process 

and the key findings. Some of the best practices are being piloted 

to support the development and monitoring of the policy actions. 

In the paper, we describe nine pilots that involve pervasive health 

technology and otherwise strongly leverage ICT to benefit senior 

users. Most employ wearables and other sensing devices to 

monitor the users and provide health and care services, or provide 

telehealth and care through web and mobile technology. 

KEYWORDS 

Social innovation, integrated care, telehealth, telecare, 

transnational strategy, action plan 

1 INTRODUCTION 

The population of Europe and the rest of the developed world is 

rapidly aging. In the last 20 years, the old-age dependency ratio 

of working-age population vs. seniors in Europe decreased from 

4 : 1 to 3 : 1, and it is projected to further decrease to 1.75 : 1 by 

2050 [1]. This will result in a range of problems, including a lack 

of people who can support the seniors once they can no longer 

live independently. These problems will have to be tackled from 

multiple angles: with demographic policies, increases in 

retirement age, and social and technological innovations that can 

improve the care for the seniors and their quality of life. 

The SI4CARE project [2] aims to create a transnational 

ecosystem for social innovation in integrated care with a focus 

on ICT technology. It started with surveying the status quo of 

health and social care in the Adriatic-Ionian region, identifying 

needs and challenges, as well as best practices that can answer 

them. It then formulated wishes and actions for improved health 

and social care, which will eventually result in a transnational 

strategy and national/regional action plans. 

To gain a deeper insight into the benefits of the identified best 

practices and ways of implementing them, the project started 13 

pilots in seven countries. We describe the nine that involve 

pervasive health technology and otherwise strongly leverage ICT 

to benefit senior users. Most employ wearables and other devices 

to monitor the users and provide health and care services, or 

provide telehealth and care through web and mobile technology. 

2 SI4CARE PROJECT: FROM STATUS QUO 

TO ACTION 

The SI4CARE project used a systematic and evidence-based 

approach for devising a strategy and actions to improve 

integrated care via social and technological innovation, with the 

aim of presenting solid arguments to decision makers. 

2.1 Status Quo of Health and Social Care 

The first step was to survey the status quo (the state of affairs) in 

health and social care in the Adriatic-Ionian region, comprising 

Slovenia, Croatia, Bosnia and Herzegovina, Serbia, Montenegro, 

Greece and Italy. Four key activities were done: 

 We surveyed the literature, such as statistical reports, 

national and regional policy documents and legislation. 

 We conducted semi-structured interviews with high-level 

stakeholders such as highly placed employees at relevant 

 
Permission to make digital or hard copies of part or all of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for profit or commercial advantage and that copies bear this notice and the full 

citation on the first page. Copyrights for third-party components of this work must 

be honored. For all other uses, contact the owner/author(s). 

Information Society 2022, 10–14 October 2022, Ljubljana, Slovenia 

© 2022 Copyright held by the owner/author(s). 

48

mailto:email@email.com


ministries, non-governmental organizations and educational 

institutions. The interviews included 26 questions on the 

healthcare system, financial and physical accessibility of 

healthcare services, future challenges and other topics. 31 

stakeholders were interviewed in total. Qualitative analysis 

of the answers was performed, focusing on the main points 

raised among the participants. 

 We administered a questionnaire to various people employed 

in health and social care services. The questionnaire included 

29 items on the use of healthcare services by seniors, their 

accessibility, the ability to obtain information on healthcare, 

and the status of seniors in the society and their social care. 

A subset of these questions was asked specifically about 

people with memory impairment or dementia. We received 

responses from 222 health and social care staff. 

 We administered the same questionnaire to seniors. We 

received responses from 619 people. 

Our finding was that in general, the provision of healthcare 

services is moderately good, with a lack of human resources cited 

as a key problem. Rehabilitation was noted to be less available 

than other services, and people with dementia face more 

problems than the general elderly population. A significant 

problem is that seniors are poorly informed about healthcare. 

Even though healthcare is mostly covered by insurance, many 

seniors face significant financial problems, mainly due to low 

pensions. In part, this appears to be because, despite the 

insurance, they sometimes still need to resort to private services. 

Waiting times are a common issue, which may explain the use of 

private services. Physical accessibility is also a major issue – the 

seniors have significant difficulties using public transport. 

Secondary healthcare for people living in rural areas was also 

found to be difficult to access. 

Seniors have a low digital literacy and find anything 

involving the internet (e.g., booking an appointment) a major 

problem. High-level stakeholders feel that new technologies 

have not been successfully integrated in the healthcare system, 

and this is even more true for the questionnaire respondents. 

Most stakeholders believe such technologies are important, 

though, validating the objectives of the SI4CARE project. 

2.2 Best Practices 

The SI4CARE project identified and documented 115 best 

practices in social and technological innovation to improve the 

care and quality of life of seniors, selected based on their 

effectiveness as demonstrated by experience. 

Since SI4CARE emphasizes the use of ICT technologies in 

integrated care, most of the identified best practices are 

technology-based. The largest group involve pervasive health 

technology, such as wearables to monitor users, either to help 

them manage their health or to provide functions such as fall 

detection. Some also use sensing integrated in fitness devices or 

3D cameras to support rehabilitation. There are also web and 

mobile platforms that support various activities interesting to 

seniors (e.g., gardening, cognitive training), facilitate 

communication and social inclusion. A few best practices are 

intended for hospitals and other care organizations (e.g., for 

management of health records). 

Some of the best practices – less relevant to this paper but 

otherwise just as important – are non-technological. Examples 

include providing information and training to seniors about 

health(care), particularly dementia, and digital technology; 

promotion of social inclusion; and organizing provision of 

(health)care (e.g., via mobile medical units). 

2.3 Wishes to Improve Care and Quality of Life 

Based on the analysis of status quo (Section 2.1) and inspired by 

the best practices (Section 2.2), the SI4CARE project formulated 

a number of wishes that – if fulfilled – would leverage social and 

technological innovation to improve the care and quality of life 

of seniors. These were developed for each of the involved 

countries, and validated in a focus group involving stakeholders. 

Since the analysis of the status quo found a strong need for 

the introduction of new technologies, and many technology-

based best practices were identified, it is not surprising that 

various initiatives aimed at increasing the use of telehealth and 

telecare comprise the largest group of wishes. They had different 

focus: rehabilitation (where the current availability is particularly 

poor), cost-effectiveness (which is a prerequisite for institutional 

funding), non-pharmacological interventions (that tend to be 

neglected), applications that do not require institutional support 

(which are typically inexpensive and non-pharmacological) … 

Activities to improve digital skills of seniors were also wished 

for, as well as better digital infrastructure. 

Unlike best practices, most wishes were not technological. 

This is perhaps because wishes are about goals, whereas 

technology in health and social care is often a means of achieving 

these goals. The non-technological wishes include increases in 

human resources (which were found to be a key reason for the 

inadequacies of healthcare provision), improved overview of the 

state of care and solutions for improvement (essentially activities 

similar to SI4CARE’s but put on a more sustainable basis), 

improvements in home care, training and better policies. 

2.4 Transnational Strategy and Action Plans 

The preparation of the transnational strategy and 

national/regional action plans – one for each country involved – 

is still in progress. The strategy is organized in five pillars: 

 Digital transitions are concerned with pervasive health 

technologies and other ICT-based innovations exemplified 

by the pilots presented in this paper. 

 Digitalization process will support digital transitions by 

providing the required infrastructure and knowledge. 

 Economic and financial implications deal with appropriate 

funding for healthcare and other aspects of long-term care. 

 Governance and policies address sustainable and 

geographically appropriately distributed provision of care, 

ensuring its quality and properly trained staff. 

 The SI4CARE community will ensure the sustainability of 

the project via organizations that will exist after the end of 

the funding period. 

The national/regional action plans aim at implementing this 

strategy in individual countries. Their main components are 

specific actions, which essentially fulfill the wishes discussed in 

Section 2.3. These wishes are being validated by stakeholders in 

events organized in each country, one of which is also taking 

place at the Information Society 2022 multiconference. 

Afterwards, the action plans will be presented to high-level 

decision makers. 
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3 PILOTS OF ICT SOLUTIONS FOR 

INTEGRATED CARE 

3.1 Mobile Application for Self-management of 

Heart Failure 

Heart failure is a common and debilitating disease among 

seniors, and a leading cause of hospitalizations. It requires 

complex management difficult for many seniors. Healthcare 

institutions provide only periodic checkups and cardiac 

rehabilitation, the latter not to all who would benefit. Resources 

to provide more support are hard to come by, so a mobile 

application to assist self-management is an attractive solution. 

The HeartMan application [3] provides a personalized 

exercise program and nutrition advice, support for measurement 

of vital parameters, medication reminders, mindfulness exercises 

intended to improve the patients’ mental health and wellbeing, 

and cognitive behavioral techniques to improve the adherence to 

the application’s advice. The first step of the pilot was to make 

the application easier to deploy and to remove physiological 

monitoring as input for its decisions, as this is a barrier from the 

usability and regulatory perspective. The user experience was 

also improved. The ongoing second step is a feasibility study 

with 20 patients using the application and 10 controls. 

The lesson learned so far is that designing an application for 

heart-failure patients is difficult due to the complex topic and 

poor digital and health literacy of this group. Our solution was to 

guide less advanced users by simple automatic prompts, and not 

require them to do much on their own initiative. 

3.2 ICT Solution for Monitoring the Health of 

Patients after Returning Home 

Special Hospital Merkur is a secondary health institution in 

Serbia specializing in diabetes. Upon discharge, patients often 

return to bad habits, and diabetes complications occur. In 

addition, they face problems when they need to see a doctor.  

The main aim of the pilot was to investigate the integration of 

modern communication technology in diabetes treatment to 

facilitate better coordination between stakeholders. The patients 

were trained to use the SmartCare mobile application, and to 

input the necessary data (insulin, sugar, mass, blood pressure, 

temperature, etc.). Merkur's medical team had insight into the 

patient's condition and intervened as needed. In addition, patients 

were trained to contact doctors for consultations from home. 

The combined effect of the involvement of patients in their 

health condition, and the remote intervention of doctors, proved 

to reduce the risk of diabetes complications. The pilot 

demonstrated the feasibility of remote treatment in Serbia, which 

can also lead to significant financial savings. It should be 

repeated on a larger sample on a national level to provide a basis 

for the introduction of telemedicine in the health system. 

3.3 ICT to Enable Accessibility to Health 

Systems by the Elderly 

In the Italian healthcare system, regional governments are 

responsible for ensuring the delivery of a health benefits package 

through a network of health management organizations. There is 

a remarkable difference among regions, with northern regions 

providing better services, resulting in migration of patients from 

south to north. In 2018, healthcare mobility in Calabria amounted 

to approx. € 310 million. This is particularly relevant for small 

towns and villages where people suffer from a lack of general 

medicine and efficient public transportation to regional hubs. 

Due to some recent programs, many rural areas in Calabria 

have good internet connections. In this pilot, with the help of 

UCCP del Reventino (a team of physicians), we are evaluating 

the use of tele-assistance and remote monitoring of chronic 

patients (elderly people and people affected by dementia). 

The developed services are particularly useful for patients 

who require a re-evaluation of an already known clinical picture, 

people suffering from rare diseases, and frail people who require 

constant contact with health facilities. Teleadvice also proved of 

great utility in the context of COVID-19. 

3.4 Specialized Outpatient Clinic for Memory, 

Dementia and Parkinson's Disease  

Approximately 20% of the population above the age of 65 are 

affected by mild cognitive impairment or dementia. As the status 

quo analysis indicated, these people have limited access to 

specialized healthcare. This is more pronounced in remote areas. 

Greece has many small and isolated islands with a high 

percentage of elderly inhabitants and understaffed health centers.  

The Aeginition Hospital of the National and Kapodistrian 

University of Athens developed an outpatient clinic pilot through 

the National Telemedicine Network, in collaboration with the 

2nd Regional Healthcare Administration of Piraeus and the 

Aegean Islands. Through this clinic, patients with cognitive or 

movement disorders living in remote Aegean islands are 

examined by a specialized healthcare team (neurologist, 

psychiatrist and neuropsychologist) through video-conferencing. 

Based on the questionnaires from 58 telemedicine visits, all 

stakeholders are highly satisfied with this telemedicine service, 

mentioning improved care, better health, and convenience, 

reduced transportation and cost. The low number of cases 

compared to the available capacity points to the need to better 

disseminate the information about the availability of 

telemedicine in the area by involving local health professionals 

and other telemedicine services in Greece. 

3.5 Tele-exercise for the Elderly and Patients 

with Cognitive Disorders/Dementia 

Physical activity is a well-established non-pharmaceutical 

intervention for health improvement in the elderly. It improves 

mobility, fitness, and cognitive function, prevents falls, improves 

functionality and quality of life as well as increases socialization.  

The Aeginition Hospital of the National and Kapodistrian 

University of Athens in collaboration with the Medical School of 

Athens developed a tele-exercise pilot to provide specialized 

online physical activity programs for the elderly. Small groups 

of about 10 individuals receive aerobic and resistance training 

with a frequency of 2–5 times/week and duration of 40 min per 

intervention, guided in real-time via video-conference by 

specialized healthcare professionals. The elderly involved were 

trained to use the tablets though which they are participating. 

All participants report high satisfaction rates and improved 

functionality in everyday life. Key lessons learned are that tele-

exercise is feasible and effective non-pharmacological treatment 

that enhances social interaction, and that effective collaboration 
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between healthcare providers is necessary. The elderly face 

difficulties in the use of new technologies and training is needed. 

3.6 Individualized Training Based on 

Biomechanical Measurements 

The importance of physical activity was already discussed in the 

previous pilot description. The status quo analysis in Slovenia 

showed that the availability of physical exercising and 

rehabilitation services is not adequate. Resorting to the private 

sector may result in lower quality of services as they might be 

provided by people without the necessary knowledge and skills. 

We prepared a pilot in which training was based on initial 

screening of the participants by an orthopedist and experienced 

coaches, followed by biomechanical measurements of lower 

extremities. Isometric measurement of peak torque and 

tensiomyography were used along with a body composition 

measurement. 24 participants performed training 2 times per 

week for 3 months under two conditions: half of the participants 

exercised in a gym, while the other half online. In the in-person 

scenario, participants were divided in small groups. The focus 

was proper posture and exercise execution. Only after absorbing 

proper technique, the training increased intensity. 

Both conditions were warmly accepted by participants, with 

the in-person one slightly preferred. Working in small groups not 

only enabled individual training, but also group cohesion, 

resulting in socialization after exercising in the nearby café. 

3.7 Nursing by Monitoring 

The pilot carried out in Split, Croatia, was motivated by the well-

established issue of inadequate resources to provide quality care 

to seniors who cannot live independently. 

The pilot used monitoring technology that requires minimal 

interactions with senior users, since they are not familiar with 

digital technology. 10 medically non-certified wristbands, 

equipped with LoRaWAN radio, ensure data delivery to large 

distances without using mobile phones as a gateway. The 

wristbands enable 10-minute acquisition of heart rate, GPS 

location, steps, calories, and wrist temperature, as well as having 

alarms for low heart rate and falls, and a help button. The data is 

received by a system called IoT Wallet, which allows future 

expansion since it supports adding add more wristbands. 

LoRaWAN technology turned out to provide broad coverage 

with a relatively low power consumption. 

3.8 Access to Public Social Services by 

Telemedical Monitoring (Click for Life) 

Seniors represent a high percentage of the population of Region 

of Central Macedonia (RCM) in Greece (22% are over 65), with 

a significant proportion of them living alone (approx. 100,000). 

They face difficulties in access to public social services, 

especially in high-density urban places and remote rural areas.  

The RCM regional authority launched the pilot project 'Click 

for Life', offering telemedicine/homecare assistance to seniors 

with a low income living alone. Approx. 3000 users participate 

so far. They are provided: (1) 24-hour monitoring via devices 

with fall detection and a panic button. The panic button enables 

communication with a call center 24 hours/day. (2) Medical 

history is accessible to relatives and health professionals, and the 

users can receive notifications from the relatives. (3) Behavioral 

assessment service interprets movement and activity data from 

devices in the user’s home. The aim is to automatically detect 

abnormal behaviors that may indicate an emerging disease. 

The lesson learned so far is that there is a need for a more 

systematic coordination of the call center with public health care 

units, doctors, social care workers and emergency units. 

3.9 Accessibility to Integrated Long-term Care  

In the pilot project we analyzed both spatial accessibility and 

accessibility of information. Slovenia is rural country. Older 

people in rural Slovenia face poor access to public services and 

especially to health facilities. In terms of spatial accessibility, we 

identified the locations of buildings where seniors live alone. In 

2021, there were 42,344 seniors living alone in houses (27,136 

aged 65–79 and 15,208 aged 80 and older) in Slovenia.  

There are a number of elderly care services advertised online, 

but the offer is scattered and searching for such information is 

time-consuming. To avoid these obstacles, we set up a web 

platform where different providers (formal and informal) are 

presented in one place. We included all formal providers in 

Slovenia in the database. We enabled self-registration of service 

providers and spatial representation of providers via the web. 

We highlighted areas with poor accessibility to health and 

social care services, and will present them to local decision-

makers and caregivers to improve integrated long-term care and 

transport for them. We will also present them our web app. 

4 CONCLUSION 

The paper presented the SI4Care project and its methodology to 

bring social innovation to integrated care. The focus was on the 

presentation of the pilots that address the identified needs and 

wishes in the region. The fact that most, nine out of thirteen, of 

the piloting activities within the SI4Care project involve some 

sort of pervasive health technology testifies to the importance of 

such technologies also for integrated care. Preliminary results 

from most pilots show benefits for stakeholders and good 

acceptance. However, digital literacy is a significant barrier, and 

in some cases also infrastructure, organizational readiness and 

legislation. Pervasive technology clearly cannot be introduced in 

isolation, which is why our strategy consists of five pillars, only 

one of which is concerned with pervasive technology. 
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ABSTRACT
The widespread use of IoT devices has contributed greatly to
the continuous digitisation and modernisation of areas such as
healthcare, facility management, transportation, and household.
These devices allow for real-time mobile sensing, use input and
then simplify and automate everyday tasks. However, like all
other devices connected to a network, IoT devices are also subject
to anomalous behaviour primarily due to security vulnerabilities
or malfunction. Apart from this, they have limited resources
and can hardly cope with such anomalies and attacks. Therefore,
early detection of anomalies is of great importance for the proper
functioning of the network and the protection of users’ personal
data above all. In this paper, deep learning and federated learning
algorithms are applied in order to detect anomalies in IoT network
traffic. The results obtained show that all the models achieve
high accuracy, with the FL models providing slight worse results
compared to the DL models. However, with the increase in the
amount of user data, the model based on federated learning is
expected to have better results over time.

KEYWORDS
federated learning; deep learning; malware; internet of things;
anomaly detection
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1 INTRODUCTION
In the last decade, a significant increase in the usage of Inter-
net of Things (IoT) devices has been observed. The ability to
connect various kinds of devices from different manufacturers
to a network wirelessly and share data has proven beneficial
to nearly every domain where this technology is involved, in-
cluding household, industry, infrastructure, transportation, and
healthcare[3]. Additionally, the actions that end users can take
are increasing everyday and vary from changing ambient param-
eters of a home or car setting easily and on-the-go to remotely
and securely controlling a manufacturing process inside a smart
factory setting. Implementing these devices into an ambient as-
sisted living (AAL) setting has proven to be beneficial both for the
patients and for the medical staff, as it can improve monitoring
and medical assistance (if needed), as well as medication dose
adjustment[7].

However, the diversity of IoT devices, accompanied by wire-
less networking and a slow standardisation process, have led to
many issues regarding the privacy and security of data and also
the processes based on that data. The occurrence of various cyber
attacks on networks composed of IoT devices, but also on indi-
vidual IoT devices performing specific tasks, is becoming more
common [8]. By disabling, reconfiguring or reprogramming such
devices, attackers can manipulate the network, obtain private
data illegally and maybe even induce a life-threatening situation,
especially in the e-health domain. Therefore, it is significantly
important to detect potential attacks and anomalies that occur
in an IoT setting.

This paper examines the detection of anomalies in IoT network
traffic by using deep learning and federated learning algorithms.
The remainder of this paper is structured as follows. Section
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2 gives an overview of the approaches tackling IoT network
anomaly detection using deep and federated learning algorithms.
Section 3 describes the used dataset and gives an insight into
the importance of the features. The experiments done in this
research and the discussion of the results obtained are presented
in Section 4, while Section 5 gives a brief summary and provides
further research directions.

2 RELATEDWORK
One of the most popular approaches when tackling network
anomaly detection is the usage of network intrusion detection
systems (NIDS). By examining network data flow patterns (signa-
tures), the NIDS can track inconsistencies (also called anomalies)
and resolve them in a timely manner. However, directly analysing
the behaviour of the IoT devices has proven to be more beneficial
in detecting newer and unknown types of attacks, in spite of the
overall lower detection accuracy and higher computational cost
[6].

Using machine learning (ML) techniques has had a big impact
on the development of NIDS and malware anomaly detection sys-
tems in general. Lin et al. [9] propose a combination of Support
Vector Machines (SVMs) and Artificial Fish Swarm algorithms
for IoT botnet detection. A combination [5] using different ML
algorithms, also including an SVM has been done to evaluate the
accuracy in detecting Mirai DDoS attacks. The authors in [16]
used Convolutional Neural Networks (CNN) with binary visu-
alisation to provide fast zero-day malware detection. However,
some of the datasets used in these research papers provide only
network traffic flow from conventional networks and have little
to do with the attacks which target IoT networks. A further issue
is that using traditional ML techniques increases the security
risk, as data has to be moved away from the network and the
data source to a powerful system performing the ML training.

Federated learning (FL) has emerged as a new decentralised
way of training models on privately held datasets that can or
should not be shared for security and privacy reasons. The train-
ing process consists of a central server and several clients, where
the former facilitates the training and the latter possess the pri-
vate data. In each round of federated training, the server randomly
selects a subset of clients who receive the current model param-
eters. Then, local training is performed by each of the clients,
keeping the local data on-site. The updated model parameters
are then sent back to the server, where the global server model
is updated. Opposed to centralised ML or classical decentralised
techniques, FL can work with both independent and identically
distributed (IID) and non-IID datasets. [10]

Several approaches have been using this decentralised tech-
nique in order to detect anomalies in IoT networks. The DIoT
approach [2] uses federated learning to aggregate profiles of IoT
network behaviour. It was evaluated in real-world conditions and
reported no false alarms. Saharkhizan et al. [14] used a recurrent
neural network with ensemble learning to detect cyberattacks
on IoT devices. The evaluation of the model was performed on a
Modbus dataset of network traffic. Some of the approaches even
used a combination of FL and a distributed ledger (blockchain)
[12, 17] in order to detect anomalies in networks. In [13], the fed-
erated deep learning model created for zero-day botnet attacks on
IoT devices outperformed traditional decentralised approaches,
as well as both localised deep learning (DL) and distributed DL
methods. In [15], a novel privacy-by-design FL model using a
stacked long short-time memory (LSTM) model is introduced

for tackling anomaly detection in smart buildings. The results
showed twice as fast convergence during training, compared to
the centralised LSTM.

3 DATASET AND EXPLORATORY DATA
ANALYSIS

For the purpose of this research we used the publicly available
dataset N-BaIoT [11]. It is a dataset created by a group of re-
searchers from the University of California, Irvine, School of
Information and Computer Sciences in the USA. The dataset ad-
dresses the lack of public botnet datasets, especially for the IoT
domain. It is composed of real-time network traffic data gathered
from nine commercial IoT devices, including a babymonitor, secu-
rity cameras, a webcam, doorbells, and a thermostat, which have
been infected by the most common families of botnet attacks:
Mirai and Bashlite [1].

Figure 1: N-BaIoT dataset distribution by class

The N-BaIoT dataset consists of 7,062,606 entries with 115
different features, which are further divided into 10 attack cat-
egories: gafgyt_combo, gafgyt_junk, gafgyt_scan, gafgyt_tcp,
gafgyt_udp, mirai_ack, mirai_scan, mirai_syn, mirai_udp, mi-
rai_udpplain and one benign category, which contains the nor-
mal traffic flow of the observed devices. As it can be seen from
Figure 1, which shows the distribution of the dataset used in
the upcoming experiments, only a portion (509,149 entries) is
considered for the model training in both DL and FL experiments.
For the DL experiments, the dataset is further divided into a
train and test partition including 80% and 20% of the data, while
maintaining the distribution intact. As for the FL experiments,
the data is divided into 50 IID datasets which include a train and
test subsets. They represent the 50 clients which will take part in
the FL process.

Table 1: Most important dataset features

Number Feature
1 H L0.01_mean
2 Ml_dir_L0.01_mean
3 Ml_dir_L0.01_variance
4 H_L0.01_variance
5 H_L0.1_mean

After preprocessing the data, an exploratory analysis was
done in order to obtain the features which have the greatest
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Figure 2: DL model using the five layer NN - accuracy

Figure 3: DL model using the three layer NN - accuracy

influence. The mutual dependence between the features and
the class was determined with the help of Mutual Information
Gain. From Table 1, it can be noticed that the five features with
the greatest importance are H L0.01_mean, Ml_dir_L0.01_mean,
Ml_dir_L0.01_variance, H_L0.01_variance and H_L0.1_mean.

4 EXPERIMENTS AND DISCUSSION
This paper compares two DL and two FL models for network
anomaly detection, which are able to distinguish anomalous be-
haviour or a deviation from the normal traffic flow of IoT devices.
After performing the training, all models were evaluated in order
to see their accuracy in detecting anomalies. In the first exper-
iment, a feed-forward neural network with 5 layers, an input
layer, 3 hidden layers and an output layer was used. In the sec-
ond experiment, a simple feed-forward neural network with one
hidden layer was used. In both cases, the output layer has 11
neurons, which represent all the classes in the dataset.

Both models have the same hyperparameters. We used the
Adam optimiser with a learning rate of 0.001, which works well
for many use cases and models. Since the model performs a multi-
class prediction task, we minimised the categorical cross entropy
loss during training. The DL experiments were performed us-
ing the TensorFlow framework and the FL experiments were
performed using the Flower [4] framework and TensorFlow Fed-
erated, applying the FedAvg aggregation strategy [10] on the

Figure 4: FL model using the five layer NN - accuracy

Figure 5: FL model using the three layer NN - accuracy

server. In the FL experiments 35 rounds were performed, which
corresponds to approximately 35 epochs in the DL experiments.

As previously mentioned, two DL models, the first one using
a NN with multiple layers and the second one using a simple NN
were trained and tested. From Figures 2 and 3 we can notice that
the accuracy between the two models is very similar - the first
model obtained an accuracy of 90.75% on the test data, while the
second model obtained an accuracy of 90.18%. Furthermore, if
the confusion matrices of both DL models are analysed, it can be
noted that both models make the same mistake - predicting class
4 (gafgyt_scan) as class 5 (gafgyt_tcp).

When it comes to the results obtained from the FL process after
35 rounds it can be seen that the first model obtained an accuracy
of 88% (Figure 4). As for the second simplifiedmodel, the accuracy
is 86% (Figure 5). This means that even though a simpler NN was
used, the second model actually performed similarly in terms of
FL. We can also observe the minor differences in accuracy ( 1-
5%) between the DL and FL models, which means that although
the DL models performed slightly better, the FL models can also
accurately predict anomalies.

From Figures 6 and 7 we can analyse the SHAP (SHapley Ad-
ditive exPlanations) force plot, which shows the contribution
of each feature in making a prediction. We can see that the fea-
tures 69, 25, 75, 87, 56 and 101 (HH_jit_L3_mean, H_L0.1_mean,
HH_jit_L0.1_mean, HpHp_L3_weight, HH_L0._covariance and
HpHp_L0.1_weight) have the greatest influence in making the
prediction. The features 69, 25 and 75 have a positive impact on
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Figure 6: SHAP force plot for DL model using the five layer NN.

Figure 7: SHAP force plot for DL model using the three layer NN.

decision-making, i.e. prediction, while the features 87, 56 and 101
affect negatively on the performance. When we compare Figures
6 & 7 and Table 1, we can see that the most important features
are different. This is because the SHAP method deals with the
model and its output, while Mutual Information Gain deals with
the preprocessed data.

5 CONCLUSION AND FUTUREWORK
This paper compares two models of DL and FL for accurate anom-
aly detection purposes in IoT networks. The FL model distributes
the learning process to several clients, thus preserving data pri-
vacy and security. Both models achieve high accuracy, with the
FL models providing similar results to the DL models.

Future work will include implementing some security mech-
anisms to the FL models and evaluating the trade-off between
privacy and accuracy. Also, these models can be further tested
and improved by being provided with new substantial datasets
which may combine similar categories of attacks and/or include
novel attacks on IoT networks. New federated learning algo-
rithms can also be tested and evaluated on the same and new
datasets, which can lead to a novel federated learning algorithm
for anomaly detection purposes.
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