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PREDGOVOR MULTIKONFERENCI  

INFORMACIJSKA DRUŽBA 2019 
 
Multikonferenca Informaci družba (http://is.ijs.si) je z dvaindvajseto zaporedno prireditvijo tradicionalni osrednji 

srednjeevropski dogodek na področju informacijske družbe, računalništva in informatike. Informacijska družba, 

znanje in umetna inteligenca so - in to čedalje bolj – nosilci razvoja človeške civilizacije. Se bo neverjetna rast 

nadaljevala in nas ponesla v novo civilizacijsko obdobje? Bosta IKT in zlasti umetna inteligenca omogočila nadaljnji 

razcvet civilizacije ali pa bodo demografske, družbene, medčloveške in okoljske težave povzročile zadušitev rasti? 

Čedalje več pokazateljev kaže v oba ekstrema – da prehajamo v naslednje civilizacijsko obdobje, hkrati pa so notranji 

in zunanji konflikti sodobne družbe čedalje težje obvladljivi.  

 

Letos smo v multikonferenco povezali 12 odličnih neodvisnih konferenc. Zajema okoli 300 predstavitev, povzetkov 

in referatov v okviru samostojnih konferenc in delavnic in 500 obiskovalcev. Prireditev bodo spremljale okrogle mize 

in razprave ter posebni dogodki, kot je svečana podelitev nagrad. Izbrani prispevki bodo izšli tudi v posebni številki 

revije Informatica (http://www.informatica.si/), ki se ponaša z 42-letno tradicijo odlične znanstvene revije.  

 

Multikonferenco Informacijska družba 2019 sestavljajo naslednje samostojne konference: 

• 6. študentska računalniška konferenca  

• Etika in stroka 

• Interakcija človek računalnik v informacijski družbi 

• Izkopavanje znanja in podatkovna skladišča  

• Kognitivna znanost 

• Kognitonika 

• Ljudje in okolje 

• Mednarodna konferenca o prenosu tehnologij 

• Robotika 

• Slovenska konferenca o umetni inteligenci 

• Srednje-evropska konferenca o uporabnih in teoretičnih računalniških znanostih 

• Vzgoja in izobraževanje v informacijski družbi 

 

Soorganizatorji in podporniki konference so različne raziskovalne institucije in združenja, med njimi tudi ACM 

Slovenija, SLAIS, DKZ in druga slovenska nacionalna akademija, Inženirska akademija Slovenije (IAS). V imenu 

organizatorjev konference se zahvaljujemo združenjem in institucijam, še posebej pa udeležencem za njihove 

dragocene prispevke in priložnost, da z nami delijo svoje izkušnje o informacijski družbi. Zahvaljujemo se tudi 

recenzentom za njihovo pomoč pri recenziranju. 

 

V 2019 bomo sedmič podelili nagrado za življenjske dosežke v čast Donalda Michieja in Alana Turinga. Nagrado 

Michie-Turing za izjemen življenjski prispevek k razvoju in promociji informacijske družbe je prejel prof. dr. Marjan 

Mernik. Priznanje za dosežek leta pripada sodelavcem Odseka za inteligentne sisteme Instituta »Jožef Stefan«. 

Podeljujemo tudi nagradi »informacijska limona« in »informacijska jagoda« za najbolj (ne)uspešne poteze v zvezi z 

informacijsko družbo. Limono je dobil sistem »E-zdravje«, jagodo pa mobilna aplikacija »Veš, kaj ješ?!«. Čestitke 

nagrajencem! 

 

 

Mojca Ciglarič, predsednica programskega odbora 

Matjaž Gams, predsednik organizacijskega odbora 

http://is.ijs.si/


 

FOREWORD - INFORMATION SOCIETY 2019 
 

The Information Society Multiconference (http://is.ijs.si) is the traditional Central European event in the field of 

information society, computer science and informatics for the twenty-second consecutive year. Information society, 

knowledge and artificial intelligence are - and increasingly so - the central pillars of human civilization. Will the 

incredible growth continue and take us into a new civilization period? Will ICT, and in particular artificial 

intelligence, allow civilization to flourish or will demographic, social, and environmental problems stifle growth? 

More and more indicators point to both extremes - that we are moving into the next civilization period, and at the 

same time the internal and external conflicts of modern society are becoming increasingly difficult to manage. 

 

The Multiconference is running parallel sessions with 300 presentations of scientific papers at twelve conferences, 

many round tables, workshops and award ceremonies, and 500 attendees. Selected papers will be published in the 

Informatica journal with its 42-years tradition of excellent research publishing.  

 

The Information Society 2019 Multiconference consists of the following conferences:  

• 6. Student Computer Science Research Conference  

• Professional Ethics 

• Human – Computer Interaction in Information Society  

• Data Mining and Data Warehouses  

• Cognitive Science 

• International Conference on Cognitonics 

• People and Environment 

• International Conference of Transfer of Technologies – ITTC 

• Robotics 

• Slovenian Conference on Artificial Intelligence 

• Middle-European Conference on Applied Theoretical Computer Science  

• Education in Information Society 

 

 

The Multiconference is co-organized and supported by several major research institutions and societies, among them 

ACM Slovenia, i.e. the Slovenian chapter of the ACM, SLAIS, DKZ and the second national engineering academy, 

the Slovenian Engineering Academy. In the name of the conference organizers, we thank all the societies and 

institutions, and particularly all the participants for their valuable contribution and their interest in this event, and the 

reviewers for their thorough reviews.  

 

For the fifteenth year, the award for life-long outstanding contributions will be presented in memory of Donald 

Michie and Alan Turing. The Michie-Turing award was given to Prof. Marjan Mernik for his life-long outstanding 

contribution to the development and promotion of information society in our country. In addition, a recognition for 

current achievements was awarded to members of Department of Intelligent Systems of Jožef Stefan Institute. The 

information lemon goes to the “E-Health” system, and the information strawberry to the mobile application “Veš, 

kaj ješ?!” (Do you know what you eat?!). Congratulations! 

 

Mojca Ciglarič, Programme Committee Chair 

Matjaž Gams, Organizing Committee Chair 
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PREDGOVOR 

 

 

Spet so minila tri leta in pred nami je nova konferenca MATCOS (Middle European 

Conference on Applied Theoretical Computer Science). Če se odločite, da boste prinesli 

konferenco v novo mesto in upate, da bo vaš napor obrodil sadove, poskušate pridobiti čim 

boljše strokovnjake v programski odbor. Da jih pridobite, pregledate vse svoje povezave – vse 

samo zato, da bi bila konferenca čim boljša. Ko konferenco organizirate v drugo, že bolje 

razumete težave, ki vas čakajo in se jim poskušate izogniti. Na koncu, če je konferenca 

uspešna, pričnete verjeti, da bo prav tako uspešna tudi naslednja. Tako lahko tretji MATCOS 

smatramo kot začetek nove tradicije. Poleg tega smo v paleto konference poskusili dodati 

nove »barve«. 

V programskem in organizacijskem odboru so ostali vsi aktivni člani, vrata pa smo odprli 

nekaterim novim članom. Sicer je področje konference ostalo nespremenjeno, vendar so teme 

posameznih prispevkov širše. Ostala je tudi navezava na študentsko konferenco StuCosRec 

(Student Computer Science Research Conference). Novost je bila vključitev kratkih 

prispevkov poleg rednih. Po recenzijah bomo na konferenci tako poslušali 21 rednih in 16 

kratkih prispevkov. 

Thomas Pock z Unverze za tehnologijo v Gradcu je »zagotovilo«, da se bo kakovost vabljenih 

predavanj nadaljevala. Žarišče njegovega raziskovanja predstavlja po eni strani razvoj 

matematičnih modelov računalniškega vida in obdelave slik ter po drugi strani razvoj 

učinkovitih konveksnih ne-gladkih optimizacijskih algoritmov. Upamo, da bo predavanje 

uporabno tako za strokovnjake kot za širšo publiko. 

Člani programskega in organizacijskega so v zadnjih nekaj mesecih pred konferenco opravili 

veliko delo. Zato vsem, ki ste pomagali pripraviti in izvesti »tradicionalni« tretji MATCOS en 

velik hvala. 

Upamo, da boste ta dneva v Kopru resnično uživali ter vzpostavili nove strokovne stike med 

konferenco MATCOS-19. 

 

 

V imenu organizatorjev 

Andrej Brodnik and Gábor Galambos 

sopredsedujoča 
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FOREWORD 

 

 

Three years is over again, and we organise the new MATCOS (Middle European Conference 

on Applied Theoretical Computer Science) conference. If you decide to bring a conference in 

a new city you hope that your efforts will be successful, therefore you try to bring together 

good people in the PC and you leave no stone unturned within your connection to make the 

first conference on the best level. Arriving to the second instance you start to understand the 

difficulties of a conference organisation, but if this second attempt becomes more successful 

then you begin to trust to the next one. We can consider the third MATCOS as the beginning 

of a new tradition, so during the organisation process we tried to bring new “colours” to the 

palette of the conference. 

As you can see the active members in the Organising Committee and the Program Committee 

remained, and we opened the door for new members. The scope is the same as earlier but the 

subject of the accepted papers are wider. We kept the StuCosRec (Student Computer Science 

Research Conference) adjoint. This time we accepted besides the regular papers also short 

papers giving place to more new subjects. After the review process we accepted 21 regular 

talks and 16 short talks to be presented. 

Thomas Pock from the Graz University of Technology is the “assurance” that the high level 

invited talks will be continued this year too. The focus of his research is the development of 

mathematical models for computer vision and image processing as well as the development of 

efficient convex and non-smooth optimization algorithms. We hope that his talk will be useful 

for the expert and enquirers, equally. 

The members of PC and OC did an excellent job during the last few months. Thanks to 

everybody who helped to organised this “traditional” 3rd MATCOS conference. 

We hope you will enjoy these two days in Koper and you can establish new professional 

contacts during the MATCOS-19 conference. 

 

 

On behalf of the organisers 

Andrej Brodnik and Gábor Galambos 

co-chairs 
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On the notion of duals of certain AB functions

Amar Bapić
UP FAMNIT

amar.bapic@famnit.upr.si

Enes Pasalic
UP FAMNIT

enes.pasalic@upr.si

Samir Hodžić
UP FAMNIT

samir.hodzic@famnit.upr.si

ABSTRACT
In this paper we employ two different notions of duals of
certain classes of Boolean functions which are used for the
purpose of deriving other interesting combinatorial objects
from suitable mappings from Fn

2 to Fn
2 . A class of partic-

ular interest in this context is almost bent (AB) functions
having the property that their (Walsh) spectral characteri-
zation possess a desired structure. We give a general result
regarding the Gold AB functions, state one conjecture re-
garding the Welch AB functions and some computational
results for the Kasami AB functions. Applying another def-
inition of dual, introduced by Hodžić et al. [7] we provide
computational evidence that the duals of Gold AB functions
may build a space of bent functions (vectorial bent) though
a more rigour theoretical analysis is needed.

Keywords
Vectorial bent functions, AB functions, Dual functions, Walsh
spectrum

1. INTRODUCTION
Mappings from Fn

2 to Fm
2 are called vectorial Boolean or

(n,m)-functions. Any such function F : Fn
2 → Fm

2 can be
represented in the form

F (x) = (f0(x), f1(x), . . . , fm−1(x)) , x ∈ Fn
2

where fi : Fn
2 → F2, i = 0, . . . ,m − 1, are called coordinate

(Boolean) functions of F and the 2m−1 non-zero linear com-
binations of its coordinates are termed as component func-
tions. When n is odd, (n, n)-functions that offer optimal
resistance against both linear and differential cryptanalysis
[6, 9] are called almost bent (AB) functions. There are a few
known infinite families of these functions though their com-
plete classification seems to be elusive. Another combinato-
rial objects of particular importance in cryptography, cod-
ing and design theory, is a class of vectorial bent functions
having the property that all the component functions are
bent which are characterized by a unique feature of having
(uniform) flat Walsh spectrum. Nevertheless, it was shown
by Nyberg [10] that vectorial bent functions F : Fn

2 → Fm
2

may only exist for even n and then necessarily m ≤ n/2.
Even though there is an extensive research on both these
classes of functions so far there has been no explicit connec-
tion between them. The main purpose of this article is to
establish some (partial) connections and indicate the possi-
bility of relating these structures through so called duals of
Boolean functions. The concept of dual was originally de-
fined for bent functions but it can be generalized to so-called

plateaued Boolean functions. Employing two different defi-
nitions of duals, we will provide some theoretical results that
indicate certain regularity in the dual space of AB functions.
Furthermore, we provide computational evidence that a dif-
ferent definition of a dual function, introduced originally in
[7], can identify vectorial bent functions in the dual space of
Gold AB functions. Even though we do not completely un-
derstand the mechanisms behind this phenomena this con-
nection is of great interest.

1.1 Definitions and terminology
The vector space Fn

2 is the space of all n-tuples x = (x0, . . . , xn−1),
where xi ∈ F2. For x = (x0, . . . , xn−1) and y = (y0, . . . , yn−1)
in Fn

2 , the usual dot product over F2 is defined as x · y =
x0y0⊕· · ·⊕xn−1yn−1. The weight wt(x) of x = (x0, . . . , xn−1) ∈
Fn
2 is computed as wt(x) =

∑n−1
i=0 xi. By ”

∑
” we denote the

integer sum (without modulo evaluation), whereas ”
⊕

” de-
notes the sum evaluated modulo two. The Walsh-Hadamard
transform (WHT) of f ∈ Bn, and its inverse WHT, at any
point u ∈ Fn

2 are defined, respectively, by

Wf (u) =
∑
x∈Fn2

(−1)f(x)⊕u·x, (1)

(−1)f(x) = 2−n
∑
u∈Fn2

Wf (u)(−1)u·x. (2)

The sequence of the 2n Walsh coefficients given by (1), as u
goes through Fn

2 is called the Walsh spectrum of f , denoted
by

Wf = (Wf (u0), . . . ,Wf (u2n−1)),

where u0, . . . ,u2n−1 ∈ Fn
2 are ordered lexicographically.

With Bn we denote the class of all bent Boolean functions
defined on Fn

2 , i.e., all functions whose Walsh spectrum takes
the values ±2

n
2 . A class of Boolean functions on Fn

2 char-
acterised by the property that their Walsh spectra is three-

valued (more precisely taking values in {0,±2
n+s
2 } for a

positive integer s < n) are called s-plateaued functions. [3]
In case s = 1 (s = 2) for n odd (n even), the functions are
called semi-bent. For a bent Boolean function f defined on
Fn
2 , its dual f̃ is defined as a function from Fn

2 to F2, for
which it holds that

(−1)f̃(u) = 2−
n
2 Wf (u), u ∈ Fn

2 .

A standard way of defining the dual f̃ : Fn
2 → F2 of an

s-plateaued Boolean function f on Fn
2 is as follows:

f̃(x) = 2−
n+s
2 |Wf (x)|, x ∈ Fn

2 .
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If F = (f0, . . . , fn−1) is an (n, n)-function, we define its dual

F̃ = (f̃0, . . . , f̃n−1) as an (n, n)-function whose coordinates
correspond to the duals of the coordinates of F .

2. DUALS OF AB FUNCTIONS
In this section we analyze several classes of power AB func-
tions with respect to their duals defined in the standard way.
Table 1 gives a list of certain exponents d for which the func-
tion F (x) = xd, where F : F2n → F2n , is an AB function.

Function d Conditions Degree

Gold 2i + 1 gcd(i, n) = 1, 1 ≤
i ≤ n−1

2

2

Welch 2t + 3 n = 2t+ 1 3

Kasami 22i − 2i + 1 gcd(i, n) = 1, 1 ≤
i ≤ n−1

2

i+ 1

Table 1: Some known AB power functions xd defined
on F2n [1]

2.1 Gold case
To clarify our approach we consider as an example the Gold
function F (x) = x3 defined on F23 . By identifying F23 with
F3
2, one can consider it as a function over the vector space F3

2.
With Fi(x) = vi · F (x), where v1, . . . ,v23−1 ∈ F3

2 \ {0} are
ordered lexicographically, we denote the component func-
tions of F . In Table 2, we list the truth tables of the com-
ponent functions Fi of F as well as their dual functions F̃i

on F3
2 and their corresponding Walsh spectra. In [5], it was

proved that for any n, the Walsh support of any quadratic
function on Fn

2 is a flat on Fn
2 of even dimension. Since all

Gold functions are quadratic, the following proposition sum-
marizes these observations and gives a more general result
that includes the Gold case.

Proposition 2.1. Let F : Fn
2 → Fn

2 be an AB function.
Suppose that the Walsh supports Si of the component func-
tions Fi of F are affine subspaces of dimension n− 1. Then
the component functions of the dual F̃ are linear functions
defined on Fn

2 .

Proof. First we consider the Walsh-Haddamard trans-
form of an arbitrary component function of F ∗.
Case I: Suppose that u 6= 0.

WF̃i
(u) =

∑
x∈Fn2

(−1)F̃i(x)⊕u·x =
∑
x∈Fn2

(−1)F̃i(x)(−1)u·x

=
∑
x/∈Si

(−1)u·x −
∑
x∈Si

(−1)u·x =
∑
x/∈Si

(−1)u·x

+
∑
x∈Si

(−1)u·x −
∑
x∈Si

(−1)u·x −
∑
x∈Si

(−1)u·x

=
∑
x∈Fn2

(−1)u·x − 2
∑
x∈Si

(−1)u·x = −2
∑
x∈Si

(−1)u·x,

Since every AB function is a permutation (see e.g. [1, 4]),
then 0 /∈ Si. Now, if we represent Si as Si = a + V , where
a /∈ V and V is a linear subspace in Fn

2 of dimension n− 1,

then SC
i = V . Thus, denoting by G = −2

∑
x∈Si

(−1)u·x we
have:

G = 2
∑
x/∈Si

(−1)u·x − 2
∑
x/∈Si

(−1)u·x − 2
∑
x∈Si

(−1)u·x

= 2
∑
x/∈Si

(−1)u·x − 2
∑
x∈Fn2

(−1)u·x = 2
∑
x/∈Si

(−1)u·x

= 2
∑

x∈SC
i

(−1)u·x = 2
∑
x∈V

(−1)u·x

=

{
0, u /∈ V ⊥
2 · 2dimV , otherwise

=

{
0, u /∈ V ⊥
2n, otherwise

where V ⊥ = {x ∈ Fn
2 : x · v = 0, ∀v ∈ V }.

Case II: Suppose that u = 0.

WF̃i
(0) =

∑
x∈Fn2

(−1)F̃i(x) =
∑

x∈SC
i

1−
∑
x∈Si

1 = |SC
i |−|Si| = 0.

So, for every u ∈ Fn
2 we have

WF̃i
(u) =

{
0, u /∈ V ⊥ ∨ u = 0
2n, otherwise

Since V is of dimension n − 1, V ⊥ is of dimension 1, i.e.,
WF̃i

is non-zero at only one vector.

Remark 1. If the Walsh support of a semi-bent function
f is not necessarily a flat on Fn

2 , the Walsh coefficients of
its dual f̃ on Fn

2 equal

Wf̃ (u) =

{
0, u = 0
−2

∑
x∈Sf

(−1)u·x, otherwise

2.2 Welch and Kasami case
Let us now consider the Welch power function F (x) = x2

t+3

on Fn
2 , where t = n−1

2
, for which the duals of the component

functions are given in Table 3. This leads us to the following
conjecture.

n d Walsh spectra of F̃ Comment
3 5 {0, 8} linear
5 7 {0,±8} AB
7 11 {0,±16} AB

9 19 {0,±25,±26} 5-valued Walsh spectra

11 35 {0,±26,±27} 5-valued Walsh spectra

13 67 {0,±27,±28} 5-valued Walsh spectra

15 131 {0,±28,±29} 5-valued Walsh spectra

17 259 {0,±29,±210} 5-valued Walsh spectra

Table 3: Walsh coefficients of duals of the Welch
functions

Conjecture 2.1. Let F (x) = x2
n−1
2 +3 be the Welch func-

tion defined on F2n , n ≥ 9 odd. Then the Walsh coefficients

of the duals of the component functions F̃i are 0,±2
n+1
2 or

±2
n+3
2 .
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vi TFi SFi Duals F̃i on F3
2 SF̃i

(0, 0, 1) (0, 1, 1, 0, 1, 0, 1, 0) (0,−4, 0, 4, 0, 4, 0, 4) (0, 1, 0, 1, 0, 1, 0, 1) (0, 8, 0, 0, 0, 0, 0, 0)
(0, 1, 0) (0, 0, 1, 0, 0, 1, 1, 1) (0, 0, 4, 4, 4,−4, 0, 0) (0, 0, 1, 1, 1, 1, 0, 0) (0, 0, 0, 0, 0, 0, 8, 0)
(0, 1, 1) (0, 1, 0, 0, 1, 1, 0, 1) (0, 4,−4, 0, 4, 0, 0, 4) (0, 1, 1, 0, 1, 0, 0, 1) (0, 0, 0, 0, 0, 0, 0, 8)
(1, 0, 0) (0, 0, 0, 1, 1, 1, 1, 0) (0, 0, 0, 0, 4, 4, 4,−4) (0, 0, 0, 0, 1, 1, 1, 1) (0, 0, 0, 0, 8, 0, 0, 0)
(1, 0, 1) (0, 1, 1, 1, 0, 1, 0, 0) (0, 4, 0, 4,−4, 0, 4, 0) (0, 1, 0, 1, 1, 0, 1, 0) (0, 0, 0, 0, 0, 8, 0, 0)
(1, 1, 0) (0, 0, 1, 1, 1, 0, 0, 1) (0, 0, 4,−4, 0, 0, 4, 4) (0, 0, 1, 1, 0, 0, 1, 1) (0, 0, 8, 0, 0, 0, 0, 0)
(1, 1, 1) (0, 1, 0, 1, 0, 0, 1, 1) (0, 4, 4, 0, 0, 4,−4, 0) (0, 1, 1, 0, 0, 1, 1, 0) (0, 0, 0, 8, 0, 0, 0, 0)

Table 2: Component functions and their duals for the Gold function x3 on F23 .

On the other hand, for the Kasami case, there seems not to
be any regularity about the spectra of dual components. In
Table 4 we give some observations for certain n.

n d Walsh coefficients of F̃ Comment Degree
5 13 {0,±8} AB 3
7 13 {0,±16} AB 3
7 57 {0,±16} AB 4

9 13 {0,±25,−26} 4-val 3

9 241 {0,±25,±26} 5-val 5

11 13 {0,±26,±27} 5-val 3

11 57 {0,±26} AB 4

11 241 {0,±26} AB 5

11 993 {0,±26,±27} 5-val 6

13 13 {0,±27,±28} 5-val 3

13 57 {0,±27} AB 4

13 241 {0,±27} AB 5

13 993 {0,±27,±28} 5-val 6

13 4033 {0,±27,±28} 5-val 7

Table 4: Walsh spectra of the duals - Kasami case

2.3 Vectorial bent functions from AB
The classical definition of a dual that we used previously
does not take into account the signs of Walsh coefficients
and in general such a dual is not balanced. This was the
main reason for introducing another definition of a dual of
an s-plateaued function f as follows [7].
With Sf = {x ∈ Fn

2 : Wf (x) 6= 0} we denote the Walsh
support of the function f . Its dual function f∗ on Sf of
cardinality 2n−s is defined as f∗ : Sf → F2 by

Wf (ω) = 2
n+s
2 (−1)f

∗(ω),

for ω ∈ Sf . To specify the dual function as f∗ : Fn−s
2 → F2

we use the concept of lexicographic ordering. That is, a sub-
set E = {e0, . . . , e2n−s−1} ⊂ Fn

2 is ordered lexicographically
if |ei| < |ei+1| for any i ∈ [0, 2n−s − 2], where |ei| denotes
the integer representation of ei ∈ Fn

2 . More precisely, for
ei = (ei,0, . . . , ei,n−1) we have |ei| =

∑n−1
j=0 ei,n−1−j2

j , thus
having the most significant bit of ei on the left-hand side.
Since Sf is not ordered in general, we will always represent
it as Sf = v ⊕ E, where E is lexicographically ordered for
some fixed v ∈ Sf and e0 = 0n. For instance, if

Sf = {(0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1)},

by fixing v = (0, 1, 1) ∈ Sf , then

E = {e0, e1, e2, e3} = {(0, 0, 0), (0, 0, 1), (1, 1, 0), (1, 1, 1)}

is ordered lexicographically and consequently Sf is ”ordered”
as Sf = {ω0, ω1, ω2, ω3} = {(0, 1, 1), (0, 1, 0), (1, 0, 1), (1, 0, 0)}.
This way we can make a direct correspondence between Fn−s

2

and Sf through E so that for Fn−s
2 = {x0,x1, . . . ,x2n−s−1},

where Fn−s
2 is lexicographically ordered, we have

f∗(ωj) ! f∗(ej) ! f∗(xj), xj ∈ Fn−s
2 , (3)

where xj ∈ E, j ∈ [0, 2n−s − 1], i.e., we set that Sf =
{ω0, . . . , ω2n−s−1} is ordered so that Si = v ⊕ ei, and E =
{e0, . . . , e2n−s−1} is ordered lexicographically.

Following the result of Hodžić et al. it is known that if
Sf = v ⊕ E, where E is a linear subspace of Fn

2 , with or-
dering described in Section 1, then f is a semi-bent func-
tion on Fn

2 if and only if the dual f∗ is bent on Fn−1
2 .

In this way, since all coordinate functions fi of Gold AB
functions are semi-bent on Fn

2 and all Walsh supports Sfi

are even dimensional flats, one could construct bent func-
tions f∗i , i ∈ {0, 1, . . . , n− 1}, on Fn−1

2 and check if (f∗i , f
∗
j )

form a bent vectorial Boolean function Fn−1
2 → F2

2. More
generally, if we consider k ≤ n−1

2
bent Boolean functions

f∗i1 , f
∗
i2 , . . . , f

∗
ik

, where ij ∈ {0, . . . , n − 1}, can they form a
bent vectorial function. With βk we will denote the number
of bent vectorial Boolean functions (f∗i1 , . . . , f

∗
ik

) composed
of the duals f∗i . In Table 5 we give the computational re-
sults obtained in MAGMA. (DNE=Does not exist; NC=Not
computed)

n d β2 β3 β4 β5 β6
5 3 5 DNE DNE DNE DNE
5 5 3 DNE DNE DNE DNE
7 3 13 4 DNE DNE DNE
7 5 7 1 DNE DNE DNE
7 9 13 6 DNE DNE DNE
9 3 14 1 0 DNE DNE
9 5 19 6 0 DNE DNE
9 17 15 1 0 DNE DNE
11 3 25 4 NC NC DNE
11 5 24 4 NC NC DNE
11 9 36 20 NC NC DNE
11 17 29 14 NC NC DNE
11 33 30 13 NC NC DNE

Table 5: Number of bent VBF from Gold AB

Notice that the supports of the Welch and Kasami compo-
nent functions are in general not flats in Fn

2 and therefore
the same approach cannot be easily applied to these classes.
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Let us consider the Gold function F (x) = x5 on F25 whose
coordinate functions are f1, . . . , f5. Let W∗i be the Walsh
spectra of the duals f∗i , for i ∈ {1, . . . , n}. Since the duals
are bent, we have that W ∗i (u) = ±22, for all u ∈ F4

2. With
W∗ij we denote the product of the Walsh spectra W∗i and
W∗j , defined as

W∗ij = 2−
n−1
2 · (W∗i �W∗j ),

where ”�” denotes the component-wise multiplication of the
Walsh spectra given as integer-valued vectors of length 2n−1.
In Table 6 we provide the spectra of W∗ij for 1 ≤ i < j ≤ 5.
The inverse Walsh transform of a bent Boolean function

i j W∗ij
1 2 (4, 4, 4,−4, 4, 4,−4, 4,−4, 4,−4,−4,−4, 4, 4, 4)
1 3 (4, 4, 4,−4, 4,−4, 4, 4,−4,−4,−4, 4,−4, 4,−4,−4)
1 4 (4, 4, 4,−4, 4, 4,−4, 4, 4,−4,−4,−4,−4, 4,−4,−4)
1 5 (4,−4,−4, 4, 4,−4,−4, 4, 4, 4,−4,−4, 4, 4,−4,−4)
2 3 (4, 4, 4, 4, 4,−4,−4, 4, 4,−4, 4,−4, 4, 4,−4,−4)
2 4 (4, 4, 4, 4, 4, 4, 4, 4,−4,−4, 4, 4, 4, 4,−4,−4)
2 5 (4,−4,−4,−4, 4,−4, 4, 4,−4, 4, 4, 4,−4, 4,−4,−4)
3 4 (4, 4, 4, 4, 4,−4,−4, 4,−4, 4, 4,−4, 4, 4, 4, 4)
3 5 (4,−4,−4,−4, 4, 4,−4, 4,−4,−4, 4,−4,−4, 4, 4, 4)
4 5 (4,−4,−4,−4, 4,−4, 4, 4, 4,−4, 4, 4,−4, 4, 4, 4)

Table 6: Products W∗ij of the Walsh spectra W∗i and
W∗j

(2) can be generalized, that is, for a given Walsh spectra
W = (w0, . . . , w2n−1) and fixed u ∈ Fn

2 one can define an
integer valued function W−1 : Fn

2 → Z as

W−1(u) = 2−n
∑
x∈Fn2

wxint(−1)x·u, (4)

where xint represents the integer representation of x and
wxint ∈ W. With W−1 = (W−1(u0), . . . ,W−1(u2n−1)),
uk ∈ Fn

2 , we denote the inverse Walsh spectra (in short
IWS) of W = (w0, . . . , w2n−1). In Table 7 we give the IWS
of the spectra W∗ij .

i j W∗,−1
ij

1 2 (1,−1, 1,−1,−1, 1, 1,−1, 1, 1, 1, 1, 1, 1,−1,−1)
1 3 (0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 2,−2)
1 4 (0, 0, 2, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0,−2)
1 5 (0, 0, 2, 2, 0, 0, 0, 0, 0, 0,−2, 2, 0, 0, 0, 0)
2 3 (1, 1, 1, 1, 1, 1,−1,−1, 1,−1,−1, 1, 1,−1, 1,−1)
2 4 (2, 0, 0, 0, 0, 0,−2, 0, 2, 0, 0, 0, 0, 0, 2, 0)
2 5 (0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2,−2, 0, 2, 0)
3 4 (2, 0, 0, 0, 0, 0, 0,−2, 0, 0, 0, 2, 2, 0, 0, 0)
3 5 (0, 0, 0, 0,−2, 2, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0)
4 5 (1, 1,−1, 1,−1, 1, 1, 1,−1, 1, 1, 1,−1,−1, 1,−1)

Table 7: The IWS of W∗ij

We notice three IWS that have values ±1. From Table 5 we
know that for (n, d) = (5, 5) there are exactly three pairs
(f∗i , f

∗
j ) of bent vectorial functions mapping from F4

2 → F2
2.

The coordinates ij of f∗ij = f∗i ⊕ f∗j correspond exactly to
the coordinates ij of the three Walsh spectra W∗ij for which
the IWS have values ±1. We obtained the same results for

(n, d) = (5, 3) and (n, d) = (7, 9) leading us to the following
conjecture.

Conjecture 2.2. Let F (x) = xd, d = 2i +1, gcd(i, n) =
1, 1 ≤ i ≤ n−1

2
, be the Gold function defined on F2n . With

f1, . . . , fn we denote the truth tables of its coordinate func-
tions and with f∗1 , . . . , f

∗
n their corresponding duals defined

on Fn−1
2 . Let W∗,−1

i,j denote the IWS, as described previ-
ously. Then, f∗ij = f∗i ⊕ f∗j , 1 ≤ i < j ≤ n, is bent if and

only if |W∗,−1
ij | = 1.

3. CONCLUSION
In the last few decades a lot of research has been done in
the field of vectorial Boolean functions and understanding
their structure and properties. However, many problems still
remain open. In our future research we wish to get a better
understanding of these duals and their connection with the
original function from which they were derived.
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ABSTRACT
We introduce a new graph decomposition method, which
works for relatively small or sparse graphs, and can be used
to substitute the Regularity lemma of Szemerédi in some
graph embedding problems.

Categories and Subject Descriptors
G.2.2 [Graph theory]: Extremal graph theory; Regularity;
Trees

General Terms
Graph theory

Keywords
regularity, graph decomposition, embedding

1. INTRODUCTION
All graphs considered in this paper are simple. The Sze-
merédi Regularity lemma [10] is one of the most powerful
tools of graph1 theory. It is also used in many areas outside
graph theory, for example in number theory and algorithms.
Theorem 1 (Szemerédi). For every ε > 0 there exists a
n0 = n0(ε) > 0 such that if G is a simple graph on n ≥ n0

vertices then G admits an ε-regular equipartition of its vertex
set.

We will give a short introduction to the necessary notions
in the next section. Here we only mention that ε-regularity
is a notion of quasirandomness, and equipartition means,
roughly, the partition of the vast majority of the vertex set
of G into equal sized subsets so that all, but an ε proportion
of the pairs of subsets span an ε-regular bipartite subgraph
of G.

∗Partially supported by the Ministry of Human Capacities,
Hungary, Grant 20391- 3/2018/FEKUSTRAT, the NKFIH
Fund No. KH 129597 and SNN 117879.
1There are also hypergraph versions that play crucial role
in extremal hypergraph theory and combinatorial number
theory, see eg., [6] or [9].

The dependence of n0 on ε in Theorem 1 is determined by a
tower function T evaluated at 1/ε5, where T can be defined
inductively as follows: T (1) = 2, and for i > 1 we have

T (i) = 2T (i−1). Hence, the value of n0 makes the Regularity
lemma essentially impractical. It is also well-known that we
cannot hope for a much better bound, since as was proven by
Gowers [4], there are graphs for which the number of clusters
in the Regularity lemma is necessarily a tower function of
1/ε. Note also that the lemma is only meaningful for so
called dense graphs, that is, graphs that contain a constant
proportion of the possible edges.

In this paper we present a new graph decomposition method
for bipartite graphs, which can be applied for graphs of prac-
tical size and for graphs having vanishing density. While the
Regularity lemma is useful in many areas of mathematics
and computer science, our contribution may not be so widely
applicable. Still, it can be used for finding certain subgraphs
in a host graph. As an illustration, we will give the details
of a tree embedding algorithm that uses this graph decom-
position method.

Let us mention that Gowers in [5] presented a decomposi-
tion for bipartite graphs that is somewhat similar to the one
discussed here, and used it for a problem in number theory.
That decomposition has different parameters and a much
longer and harder proof. Due to the importance of the Reg-
ularity lemma, other researchers also found weakened ver-
sions (eg. [1], [3]) in which the dependence of ε and n0 is not
determined by a tower function. These are important devel-
opments with several applications, still, none of them seems
to be so widely applicable as the original one. One can find
more details in [2]. The so called absorption method [11] is
also a choice for avoiding the use of the Regularity lemma
in some embedding problems.

The outline of the paper is as follows. First, we provide the
necessary notions for the decomposition and then describe
the decomposition method in the next section. In the sub-
sequent section we provide an application, namely, we show
that we can find a large subtree in a graph on n vertices
having Ω(n2 log logn/logn) edges.

2. DEFINITIONS, MAIN RESULT
Given a graph G with vertex set V and edge set E, we
let degG(v) denote the degree of v ∈ V. If it is clear from
the context, the subscription may be omitted. The neigh-
borhood of v is denoted by N(v), so deg(v) = |N(v)|. The
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minimum degree of G is denoted by δ(G). If S ⊂ V, then
deg(v;S) = |N(v)∩S|. The set of edges between two disjoint
sets S, T ⊂ V is denoted by E(S, T ), and we let e(S, T ) =
|E(S, T )|. We also let e(G) = |E(G)|.

LetG = G(A,B) be a bipartite graph. The density dG(A,B)
or, if G is clear from the context, d(A,B), is defined as
follows:

d(A,B) = dG(A,B) =
e(G)

|A| · |B| .

Given a number ε ∈ (0, 1) we say that G = G(A,B) is
an ε-regular pair if the following holds for every A′ ⊂ A,
|A′| ≥ ε|A| and B′ ⊂ B, |B′| ≥ ε|B|:

|dG(A,B)− dG(A′, B′)| ≤ ε.

The ε-regular equipartition of a graph G on n vertices means
that V (G) = V0 ∪ V1 ∪ . . . ∪ Vk such that Vi ∩ Vj = ∅ for
i 6= j, |V0| ≤ εn, ||Vi| − |Vj || ≤ 1 for every 1 ≤ i, j ≤ k and
all but at most εk2 pairs ViVj are ε-regular for 1 ≤ i, j. The
Vi sets are called clusters, and V0 is the exceptional cluster.

Roughly speaking, the Regularity lemma asserts that every
graph can be well approximated by a collection of quasir-
andom graphs that are defined between the non-exceptional
clusters. Unfortunately, by the result of Gowers [4], in gen-
eral the number of non-exceptional clusters is a tower func-
tion of 1/ε.

While our goal is to provide an alternative for the Regular-
ity lemma, we will also make use of the regularity concept.
Our definition is slightly more permissive than the usual one
above, this enables us to give a very short proof of our de-
composition, and it is still powerful enough to be applicable
in several embedding problems. It is called lower regularity,
and is used by other researchers as well.
Definition 2. Given a bipartite graph G = G(A,B) we
say that G is a lower (ε, η, γ)-regular pair, if for any A′ ⊂
A,B′ ⊂ B with |A′| ≥ ε|A|, |B′| ≥ η|B| we have e(A′, B′) ≥
γ · |A′| · |B′|.

Note that in the usual definition of an ε-regular pair one
has ε = η, and the edge density between two sufficiently
large subsets is between dG−ε and dG+ε. We want to have
flexibility in this notion, and allow sub-pairs with relatively
low density, and the ε 6= η case, too.

We are ready to state our main result, the precise formula-
tion is as follows.
Theorem 3. Let G = G(A,B) be a bipartite graph with
vertex classes A and B such that |A| = n and |B| = m,
and every vertex of A has at least δm neighbors in B. Let
0 < ε, η, γ < 1 be numbers so that η ≤ 1/6 and γ ≤
min{η/4, δ/20}. Then there exists a partition A = A0∪A1∪
. . .∪Ak, and k not necessarily disjoint subsets B1, . . . , Bk of
B, such that |Ai| ≥ ε · exp

(
−2 log( 1

ε
) log( 2

δ
)/η
)
n for i ≥ 1,

|A0| ≤ εn, the subgraphs G[Ai, Bi] for 1 ≤ i ≤ k are all
lower (ε, η, γ)-regular, and

k∑
i=1

e(G[Ai, Bi]) ≥ e(G)− (ε+ 2γ)nm.

Moreover,

k ≤ 2

εδ
e2 log( 1

ε
) log( 2

δ
)/η.

3. PROOF OF THEOREM 3
Let us remark that we will not be concerned with floor signs,
divisibility, and so on in the proof. This makes the notation
simpler, easier to follow.

As we have seen, edge density plays an important role in
regularity. We need a simple fact which is called convexity
of density (see eg. in [7]), the proof is left for the reader.
Claim 4. Let F = F (A,B) be a bipartite graph, and let
1 ≤ k ≤ |A| and 1 ≤ m ≤ |B|. Then

dF (A,B) =
1(|A|

k

)(|B|
m

) ∑
X∈(Ak),Y ∈(Bm)

d(X,Y ).

In order to prove Theorem 3 we need a lemma that is the
basic building block of our decomposition method.
Lemma 5. Let F = F (A,B) be a bipartite graph with vertex
classes A and B such that |A| = a and |B| = b, and every
vertex of A has at least δb neighbors in B. Let 0 < ε, η, γ < 1
be numbers so that η ≤ 1/6 and γ ≤ min{η/4, δ/20}. Then
F contains a lower (ε, η, γ)-regular pair F [X,Y ] such that
|X| ≥ exp

(
−2 log( 2

ε
) log( 2

δ
)/η
)
a and |Y | ≥ (δ(1−η)−2γ)b.

Proof: We prove the lemma by finding two sequences of
sets X0 = A,X1, . . . , Xl and Y0 = B, Y1, . . . , Yl such that
for every 1 ≤ i ≤ l we have Xi ⊂ Xi−1, Yi ⊂ Yi−1,

ε|Xi−1|/2 ≤ |Xi| ≤ ε|Xi−1|

and

|Yi| = (1− η)|Yi−1|,

moreover, the last pair F [Xl, Yl] is lower (ε, η, γ)-regular.
Hence, we may choose X = Xl and Y = Yl.

We find the set sequences {Xi}i≥1 and {Yi}i≥1 by the help
of an iterative procedure. This procedure stops in the lth
step if F [Xl, Yl] is lower (ε, η, γ)-regular. We have another
stopping rule: if |Yl| ≤ (δ(1 + η/2) − 2γ)b for some l, we
stop. Later we will see that in this case we have found what
is desired, F [Xl, Yl] must be a lower (ε, η, γ)-regular pair.

In the beginning we check, if F [X0, Y0] is a lower (ε, η, γ)-
regular pair. If it is, we stop. If not then X0 has a subset
X ′1 precisely of size ε|X0| and Y0 has a subset Y ′1 precisely
of size η|Y0| such that e(F [X ′1, Y

′
1 ]) < γ|X ′1| · |Y ′1 |, here we

used Claim 4 in order to obtain the sizes of X ′1 and Y ′1 .

Let X ′′1 be the set of those vertices of X ′1 that have more
than 2γ|Y ′1 | neighbors in |Y ′1 |. Simple counting shows that
|X ′′1 | ≤ |X ′1|/2. Let X1 = X ′1 − X ′′1 , those vertices of X ′1
that have less than 2γ|Y ′1 | neighbors in |Y ′1 |. By the above
we have |X ′1|/2 ≤ |X1| ≤ |X ′1|. Set Y1 = Y0 − Y ′1 .

For i ≥ 2 the above is generalized. If F [Xi−1, Yi−1] is not
a lower (ε, η, γ)-regular pair then we do the following. First
find X ′i ⊂ Xi−1 and Y ′i ⊂ Yi−1 such that |X ′i| = ε|Xi−1| and
|Y ′i | = η|Yi−1| and e(F [X ′i, Y

′
i ]) < γ|X ′i| · |Y ′i |. Similarly to

the above we define Xi ⊂ X ′i to be the set of those vertices
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of X ′i that have less than 2γ|Y ′i | neighbors in Y ′i . As before,
we have |X ′i|/2 ≤ |Xi| ≤ |X ′i|. Finally, we let Yi = Yi−1−Y ′i .

Using induction one can easily verify that the claimed bounds
for |Xi| and |Yi| hold for every i. It might not be so clear
that this process stops in a relatively few iteration steps. For
that we first find an upper bound for the number of edges
that connect the vertices of Xi with B−Yi. If u ∈ Xi then u
have at most 2γ(|Y ′1 |+ . . .+ |Y ′i |) ≤ 2γb neighbors in B−Yi
using that Y ′s ∩ Y ′t = ∅ for every s 6= t.

Next we show that if (δ(1 + η/2) − 2γ)(1 − η)b < |Yl| ≤
(δ(1 + η/2) − 2γ)b then F [Xl, Yl] must be lower regular.
Assume that u ∈ Xl. Then deg(u;Yl) ≥ (δ− 2γ)b, using our
argument above, hence, the number of non-neighbors of u in
Yl is at most (δ(1 + η/2) − 2γ)b − (δ − 2γ)b = δηb/2. Let
Y ′ ⊂ Yl be arbitrary with |Y ′| = η|Yl|. Then

5

6
η(δ(1 + η/2)− 2γ)b ≤ |Y ′| ≤ η(δ(1 + η/2)− 2γ)b,

using that η ≤ 1/6. We have

deg(u;Y ′) ≥ |Y ′| − δηb/2 ≥ 5

6
η(δ(1 + η/2)− 2γ)b− δηb/2.

Using the upper bounds we imposed on η and γ, one easily
obtains that

deg(u;Y ′) ≥ (δη/3 + 5δη2/12− 5/3γη)b ≥ γ|Y ′|.

Hence, for every X ′ ⊂ Xl and Y ′ ⊂ Yl with |Y ′| = η|Yl| we
have

e(X ′, Y ′) ≥ γ|X ′| · |Y ′|,

that is, if the procedure stopped because we applied the
stopping rule, then the resulting pair must always be lower
(ε, η, γ)-regular. Of course, this means that no matter how
the procedure stops, it finds a lower regular pair.

Next we upper bound the number of iteration steps. In every
step the Y -side shrinks by a factor of (1− η). We also have
that |Yl| > (δ(1 + η/2)− 2γ)(1− η)b. Putting these together
we get that

(1− η)l > (δ(1 + η/2)− 2γ)(1− η) > δ/2.

Hence,

l <
log(2/δ)

log(1/(1− η))
< 2

log(2/δ)

η
,

here we used elemantary calculus (in particular, the Taylor
series expansion of log(1 + x)) and our condition that η is
less than 1/6.

What is left is to show the lower bound for |Xl|. Note, that
|Xi|/|Xi−1| ≥ ε/2 for every i ≥ 1. Hence,

|Xl| ≥
( ε

2

)l
a = e−2 log(2/ε) log(2/δ)/ηa.

2

We are ready to prove the main result of the paper.

Proof (of Theorem 3): The proof is based on iteratively
applying Lemma 5. First we apply Lemma 5 for G and

find a lower (ε, η, γ)-regular pair G[Xl, Yl], where Xl ⊂ A
and Yl ⊂ B. Let A1 = Xl and B1 = Yl. Next we repeat this
procedure for the graph G[A−A1, B]. Similarly to the above
we define the A2 and B2 sets, where A2 ⊂ A−A1, B2 ⊂ B,
and G[A2, B2] is a lower (ε, η, γ)-regular pair.

Continue this way, finding the lower regular pairs G[Ai, Bi]
using Lemma 3 such that Ai ⊂ A−(A1∪. . .∪Ai−1), Bi ⊂ B,
and G[Ai, Bi] is a lower (ε, η, γ)-regular pair. We stop when

|A− (A1 ∪ . . . ∪Ai)| < ε|A|.

At this point set A0 = A− (A1 ∪ . . . ∪Ai).

Let us now prove the upper bound for the number of pairs
in the decomposition. As we have shown earlier |Ai| ≥
exp

(
−2 log( 2

ε
) log( 2

δ
)/η
)
n for i ≥ 1. The number of edges

in an AiBi pair is at least |Ai|(δ − 2γ)m > |Ai|δm/2. For
any 1 ≤ i 6= j ≤ k the edge sets of the pairs AiBi and AjBj
are disjoint, and the total number of edges in lower regular
pairs is at most nm. Hence, we have

k ≤ 2nme2 log( 1
ε
) log( 2

δ
)/η

εδnm
=

2

εδ
e2 log( 1

ε
) log( 2

δ
)/η.

There is only one question left, bounding the total number
of edges that belong to the lower regular pairs. Assume
first that u ∈ A − A0. We saw earlier in Lemma 3 that
u lost at most 2γ|B| edges. This explains the 2γmn term
in the theorem. If u ∈ A0, none of the edges incident to it
belongs to any of the lower regular pairs, however, |A0| ≤ εn,
therefore, the total number of edges incident to vertices of
A0 is at most εnm. With this we found the decomposition
of G what was desired. 2

Let us finish this section with a remark. Without the lower
bound for the sizes of the Ai sets, the Theorem 3 would
be trivial: every vertex v ∈ A could be a “subset” Av (a
singleton), and its neighborhood N(v) is the corresponding
Bv. The result is interesting only when the Ai sets are large.
For example, let G be the following. It is a sparse bipartite
graph with vertex classes A and B such that |A| = |B| = n.
Set ε = η = 1/10, δ = log logn/ logn, and γ = δ/20. Then
G has O(n2 log logn/ logn) edges, and the Ai sets for i ≥ 1
have size Ω(n/(logn)c), where c < 60, and every (Ai, Bi)
pair is a lower (0.1, 0.1, log log n/(20 logn))-regular pair.

4. AN APPLICATION
The main advantage of Theorem 3 is that, as the above
example shows, it can be applied for graphs having“real-life”
size, or foe relatively sparse graphs, unlike the Szemerédi
Regularity lemma. Therefore, it may extend the scope when
usual methods for graph embedding (eg. counting lemma or
the Blow-up lemma [8]) can be applied.

Below in Proposition 6 we show how to embed an almost
spanning tree into one lower regular pair. This can be used
to approximately tile the edge set of a sufficiently dense
graph G by large edge-disjoint subtrees. The rough sketch
of this approximate decomposition is as follows. Apply The-
orem 3 for the graph G, and then using Proposition 6 find
one-one almost spanning subtree in the lower regular pairs.
Delete the edges used for the subtrees. If the resulting graph
has sufficiently many edges then one can use Theorem 3
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again, and then Proposition 6 for every lower regular pair.
The process stops when the remaining vacant subgraph of G
is too sparse, and therefore one cannot find many large de-
gree vertices in it. Hence, with this method one can tile the
vast majority of edges of a graph having sufficiently large
density. Due to the length of the proof we do not give every
detail in this extended abstract.

Given a tree T rooted at r its level sets are defined as follows:
L1 = r, L2 = N(r), in general, Li+1 = N i(r), etc., where
N i(r) denotes those vertices of T that are exactly at distance
i from r in T.
Proposition 6. Let 0 < ε, η, γ < 1/10 such that η = 4γ and
ε = γ2/10. Assume G[A,B] is a lower (ε, η, γ)-regular pair.
Let T be a tree rooted at r, having color classes X and Y
such that r ∈ X, |X| ≤ (1− 10γ)|A| and |Y | ≤ (1− 10γ)|B|.
Assume further that for every i ≥ 1 we have |L2i| ≤ ε|A|
and |L2i+1| ≤ η|B|. Then T ⊂ G[A,B].

Let us remark that T does not have to have bounded de-
gree, unlike in many tree embedding results. In fact, it can
have vertices with linearly large degrees, if δ and the other
parameters are constants. The statement holds for every G
for which Lemma 5 can be applied, hence, G can have o(n2)
edges.

We need the following simple claim, the proof is left for the
reader.
Claim 7. Let F = F (U, V ) be a lower (ε, η, γ)-regular pair.
Let U ′ ⊂ U and V ′ ⊂ V such that |U ′| ≥ ε|U | and |V ′| ≥
η|V |. Then U ′ can have at most ε|U | vertices that have less
than γ|V ′| neighbors in V ′. Similarly, V ′ can have at most
η|V | vertices that have less than γ|U ′| neighbors in U ′.

Proof of the theorem: We prove the theorem via an
embedding algorithm. Let X = {x1, . . . , xk} and Y =
{y1, . . . , ym}, where r = x1. We will find the images of the
vertices of T so that we embed height-2 subtrees of T in
every step, having vertices from Y in the middle level.

Denote ϕ : V (T ) −→ A ∪ B the edge-preserving mapping
that we construct. Let Af , respectively, Bf denote the
free (ie. vacant) vertices of A, respectively, B. These sets
are shrinking as the embedding of T proceeds, but due to
the conditions of Proposition 6 we always have that |Af | ≥
10γ|A| and |Bf | ≥ 10γ|B|. Divide Af randomly into three

disjoint, approximately equal-sized subsets Af1 , A
f
2 and Af3 .

Let B′1 ⊂ Bf be the set of those vertices that have less
than γ|A| neighbors in Af1 , the sets B′2 and B′3 are defined
analogously. Then |B′1|, |B′2|, |B′3| ≤ η|B|.

Let v be an arbitrary vertex of, say, Af1 that has at least
γ|Bf −B′1 −B′2 −B′3| neighbors in Bf −B′1 −B′2 −B′3. By

Claim 7 we know that Af1 has many such vertices. By the
definition of the B′i sets we have that every vertex in N(v)

has at least γ|Afi |/4 neighbors in Afi for i = 1, 2, 3. Pick the

largest of the Afi sets, say, it is Af2 . Then the height-2 sub-
tree originating at r will be embedded so that the neighbors
of r will be mapped onto N(v) arbitrarily (|L2| is smaller,
than |N(v)|), and by construction every vertex of N(v) will

have many neighbors in Af2 . Now we redetermine the sub-
sets B′1, B

′
2, B

′
3, as some vertices have become covered in A

and in B. For the third level of the height-2 subtree origi-
nating at r we take those vertices of Af2 that are neighboring
with at least a γ proportion of Bf − B′1 − B′2 − B′3. Note
that for every ϕ(y) where y is in the middle level we have

many choices: except at most ε|A| vertices of Af2 the neigh-
borhood N(ϕ(y)) contains vertices with large degrees into
Bf −B′1−B′2−B′3. This means that we are able to map the
third level. Next we continue this process so that we embed
the height-2 subtrees originating at the vertices of the third
level one-by-one.

There is only one missing detail here, the reason why we
divided Af randomly in the beginning: if we have three Afi
sets, then the active level belongs to one of them, say, it is
Afi . Then we map the vertices of T that are exactly two levels

below them into the larger Afj -set, where j ∈ {1, 2, 3} − i.
This way we never eat up any of the Afi sets at any point in
time. Since the color classes of T are sufficiently small, this
procedure never gets stuck. 2
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Combinatoires et Théorie des Graphes, Orsay, (1976)
399–401
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ABSTRACT
Symmetries in graphs represent a natural mechanism to re-
duce redundancies in graph representations. We present a
class of graphs that can be compressed using symmetries
and an extension of this class that encompasses many more
graphs from practice. We call the extended class subgraph-
symmetry-compressible graphs. For this class we demon-
strate that it can be recognized in polynomial time.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems

General Terms
Theory

Keywords
graph theory, compression, symmetries

1. INTRODUCTION
Due to enormous quantities of data, data compression is a
very important building block of systems that gather, trans-
fer, and save the information. One type of data that is be-
coming more and more important are graphs. This paper
is a part of the exploration of how to use symmetries as a
mechanism that could reduce the amount of data in such
structures.

Symmetries are mathematically defined as graph automor-
phisms, and we will use these two terms synonymously. Bas-
ed on this notion we formally define how the symmetry can
be used to uniquely represent the graph, and what it means
that a graph representation is smaller than some other rep-
resentation. Based on this concepts we define two classes of
graphs: 1) symmetry-compressible graphs and 2) subgraph
symmetry-compressible graphs. This two graph classes have
already been defined in our previous work [3]. This paper

focuses on the question of computational complexity of sub-
graph symmetry-compressible graphs. We establish that the
problem of recognizing this class of graph can be solved in
polynomial time and we describe a practical algorithm for
it.

The paper is structured as follows. The next section gives
some preliminaries and introduces the concept of symmetry-
compressible and subgraph symmetry-compressible graphs.
Section 3 states a few basic theorems about symmetry--
compressible graphs which will be used in the main result of
this paper. Section 4 constructs the main properties of SSC
graphs, which are used in Section 5 to describe a polynomial-
time algorithm.

2. DEFINITIONS
We represent an undirected graph as a set of edges, G =
{(u, v)}, where u, v are members of the set of vertices. The
set of all vertices is denoted as V (G).

An automorphism of a graph is a bijective mapping (a per-
mutation) of V (G), which preserves the connectivity of the
graph. All automorphisms of a graph G form a group, de-
noted by Aut(G). We work with two related representations
of the symmetries. The standard representation are permu-
tations of the vertex set, i.e., bijective functions π : V (G)→
V (G). But we also require an alternative representation of
an automorphism π, the permutation of the edges. The
edge permutation, induced by the vertex permutation π, is
defined as π((u, v)) = (π(u), π(v)).

Permutations are considered in the standard cycle notation,
i.e., as a set of disjoint cycles (e.g. (123)(45)(6)). This set
contains also the cycles with only one element (identities of
the permutation). The notation cyc(π) denotes the set of
all the cycles of the permutation π. Same goes for the edge
permutation π. To obtain the cycle which contains a vertex
v (or edge e), we use cyc(π, v) (cyc(π, e) for edges).

Since graphs are represented as a set of pairs, in order to
have a comparable representation, also permutations will be
represented as a set of pairs. Trivially, since it is a func-
tion, a symmetry can be represented by |V (G)| pairs. But
many redundancies can be removed in such a representa-
tion. Namely, the identities can be omitted, and one pair
from each cycle can also be left out. The size (of the repre-
sentation) is expressed in terms of the cycle sizes as
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|π| =
∑
c∈cyc(π) (|c| − 1).

Now we can define the two classes of graph, the first one
being the class of graphs that can be more efficiently repre-
sented by using one automorphism.

Definition 1 (Symmetry Compressible Graphs). A
graph G is symmetry compressible (G ∈ SC) if ∃π ∈ Aut(G) :
|π|+ |Gπ| < |G|.

Where Gπ is the required part of the graph (under the sym-
metry π) and is defined asGπ =

{
e ∈ G | e = minf∈cyc(π,e) f

}
.

In general, the required part of the graph is the set of edges
that are extracted from the cycles of π so that there is ex-
actly one edge from each cycle in Gπ. This makes it possible
to reconstruct the original graph if we know π.

The second class of graph is the class of graphs that contains
a symmetry-compressible graph as a subgraph.

Definition 2 (Subgraph SSC). A graph is subgraph
symmetry-compressible (G ∈ SSC) if ∃H ⊆ G and H ∈ SC.

3. BASIC RESULTS ON SC GRAPHS
This section provides a few basic results about symmetry-
compressible graphs. We will provide the relevant theorems
without proofs. The complete proofs are available in [3].

The first theorem demonstrates the relation between π and π
(moved vertices and moved edges) for symmetry-compressible
graphs. The next theorem shows the condition when symme-
tries between two different connected components compress
the graph (it trivially generalizes to more components). The
next theorem shows that trees (forests to be precise) are not
symmetry-compressible. And finally, we explore the com-
pressibility of cycle graphs.

Theorem 1. G ∈ SC ⇐⇒ ∃π ∈ Aut(G) : |π| < |π|

Theorem 2. Let us assume G is composed of two con-
nected components G1 6∈ SC and G2 6∈ SC, and there is
a symmetry π mapping the component G1 onto G2. Then
G ∈ SC ⇐⇒ |G1| > |V (G1)|.

Theorem 3. If the graph T is a forest then T 6∈ SC.

Theorem 4. Even cycles Ck, (k = 2i) are symmetry com-
pressible, whereas odd cycles Ck, (k = 2i+ 1) are not.

Using these basic results, we can now explore in more detail
the properties of SSC graphs.

4. CHARACTERIZATION OF SSC GRAPHS
The main result of this section will establish that the SSC
graph class can be specified by a forbidden graph character-
ization. More precisely, a graph is not in SSC if and only
if it does not contain any of the following subgraphs: even
cycle, compressible symmetric-handcuff, and compressible
handcuff pair.

Definition 3 (Handcuff graphs). A graph is a Hk
c1,c2 -

handcuff if it consists of two cycles of lengths c1 and c2, con-
nected by a path of length k. We will call the path connecting
the two cycles also a chain - with an odd (even) length an odd
(even) chain. If c1 = c2 we call it a symmetric handcuff).

Lemma 1. Handcuff graphs with at least one even cycle
are symmetry-compressible.

Proof. This follows from Theorem 4, since we can apply
the reflective symmetry to only that cycle, leaving the rest
of handcuff fixed and thus getting a smaller representation
of the entire graph.

Because of this result we will focus mostly on handcuff graphs
which contain only odd cycles.

Lemma 2. Symmetric handcuffs H2l
2k+1,2k+1 (with even

chain) are symmetry-compressible, whereas H2l+1
2k+1,2k+1 are

not.

Proof. We consider the symmetry of Hc
2k+1,2k+1 which

maps one cycle onto another. In the case where c = 2l the
pivot of the symmetry is a node, but when c = 2l + 1 the
pivot is an edge.

• (c = 2l) The number of vertices |V (Hc
2k+1,2k+1)| =

(4k+2)+(2l−1), the size of the symmetry π is therefore

|π| = (4k+2)+(2l−1)−1
2

= 2(2k+l)
2

= 2k+l and the size of

the residual graph under π is |(H2l
2k+1,2k+1)π| = 2k +

1 + l. We see that we obtain a smaller representation:

|π|+ |(H2l
2k+1,2k+1)π| = 2k + l + 2k + 1 + l =

= 4k + 2l + 1 < 2(2k + 1) + 2l = |H2l
2k+1,2k+1|

• (c = 2l + 1) In this case the size of the symmetry is
|π| = 2k + 1 + l, and the size of the residual graph is
|(H2l+1

2k+1,2k+1)π| = 2k + l + 2. This representation is
the same in size as the original graph:

|π|+ |(H2l+1
2k+1,2k+1)π| = 2k + l + 1 + 2k + l + 2 =

= 4k + 2l + 3 6< H2l+1
2k+1,2k+1 = 4k + 2l + 3

Definition 4 (Pair of handcuffs). A pair of hand-
cuffs is the graph (Hc

k,l, H
c
k,l).

Lemma 3. A pair of handcuffs is symmetry-compressible.

Proof. This follows directly from Theorem 2, since |Hc
k,l| >

|V (Hc
k,l)|.

Definition 5 (Minimal SC graph). A graph G ∈ SC,
π being its compressing symmetry, such that ∀e ∈ G : π(e) 6=
e, is called a minimal SC graph.
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In the following analysis of SSC graphs we will focus mostly
on the subgraphs that are minimal SC graphs because of the
following lemma.

Lemma 4. All G ∈ SC contain a minimal SC subgraph.

Proof. Let G ∈ SC, π its compressing symmetry, and
F ⊆ G such that ∀e ∈ F : π(e) = e - the edges fixed by
symmetry π. We can show that the minimal SC subgraph is
simply H = G \ F . Notice that by removing edges that are
fixed by the symmetry π the graph G\F remains symmetric
under the symmetry π. Notice also that the edges not moved
by π are also present in Gπ. So since we know that

|π|+ |Gπ| < |G| =⇒ |π|+ |Gπ \ F | < |G \ F |.

In the following lemma we will require to identify graphs
without even cycles. The most useful property of these
graphs (for our application) is the following lemma.

Lemma 5. A graph has no even cycles if and only if each
block in its block tree decomposition is either an odd cycle or
K2.

The detailed proof of this lemma can be found in [1].

Lemma 6. If a graph has no even cycles and no pairs of
handcuffs then for any subgraph G′ = G1 ∪ G2, G1, G2 ⊂
G,G1 ∩ G2 = ∅ there is no compressing symmetry π ∈
Aut(G′) that maps G1 onto G2.

Proof. Let us assume the opposite, i.e., G has two dis-
joint subgraphs G1, G2 ⊂ G with a compressing symmetry
π mapping G1 onto G2. From Theorem 2 we know that for
two components, the necessary condition to be in SC is that
|V (G1)| < |G1|. For this inequality to hold, G1 needs at least
two more edges than a tree would have. When adding edges
to a tree, cycles are created, in this case at least two. And
these two cycles have to be disjoint, otherwise an even cycle
is created (which we assumed is absent in this graph). But if
there are two disjoint cycles in a connected component, they
are connected by a chain, forming a handcuff subgraph. And
an isomorphic handcuff is also present in G2, together form-
ing a handcuff pair (which we also assumed is absent from
the graph).

Finally, we join these lemmas to identify three graph types
that characterize the class SSC.

Theorem 5. If a graph G has no even cycles C2i, no
handcuff pairs (Hc

k,l, H
c
k,l), and no symmetric handcuffs with

even chain H2i
k,k, then G 6∈ SSC.

Proof. From the previous lemma we already know that
if there is no even cycles and no handcuff pairs, then any

minimal SC subgraph has to be connected. We prove that
no such connected subgraph can exists, again by contradic-
tion. Let H ⊆ G be a connected minimal SC subgraph.
Remember that H can be viewed as a tree where some ver-
texes can be substituted by odd cycles (see Lemma 5 ). We
also know H is not a tree, so it has at least one cycle. Let
us examine two possibilities:

• (H has only one cycle) The symmetry π has to map
this one cycle onto itself. And since this is a min-
imal SC graph, all edges are moved by π, therefore
the only possible symmetry is the rotational symmetry
(the reflective symmetry would leave one edge fixed).
H must be an odd cycle Ck, each vertex of this cy-
cle having a tree T attached to it. The entire size
fo the graph is k + k|T |. The size of the symmetry
|π| = |T |(k−1)+k−1 and the size of |Hπ| = |T |+1. So
|π|+|Hπ| = |T |(k−1)+k−1+|T |+1 = k|T |+k 6< |H|.

• (H has at least two cycles) Because of the aforemen-
tioned structure of H, only one cycle can be mapped
onto itself by π. So at least one cycle must be mapped
into another cycle, i.e., there are at least two cycles
with the same size (lets call them C1, C2). Since H is
connected these two cycles form a symmetric handcuff.
And now we can show that the chain in this handcuff
is of even length. There are again two possibilities for
the pivot of the symmetry π, either the pivot is a 1)
single vertex, or 2) an odd cycle. In case of 1), the
distance of C1 and C2 has to be equal, therefore the
length of the entire chain is even. In case of 2), the
path between C1 and C2 passes over an odd cycle. We
can make the chain either of odd length or even length
by choosing one part or the other part of the cycle.
So a symmetric handcuff with even chain is certainly
a subgraph, even though we assumed it is not.

5. ALGORITHM
In this section we provide further details of the algorithm
that follows from the forbidden graph characterization that
we proved in the previous section.

Lemma 7. Checking if a graph contains an even cycle can
be done in polynomial time.

Proof. From [2], we know that a block decomposition
can be done in linear time. When we have a block decom-
position, we check every block. If the block is anything other
than K2 or C2k+1, the graph contains an even cycle −→ the
graph is ∈ SSC. It is trivial to check if the block is only one
edge or C2k+1 - for the latter the number of vertices and
edges has to be the same and odd.

Lemma 8. Every connected graph G, having ≥ 3 edge dis-
joint k cycles, contains a symmetric handcuff subgraph, i.e.,
G ∈ SSC.
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Proof. We will prove this for the case when we have 3
disjoint cycles, for more it trivially follows.

Lets call the three cycles C1, C2, C3. Since they are in a
connected graph, there is a path between each pair of these
cycles. Now we need to show that there is at least one even
chain between a pair of cycles. There are two cases:
1) C2 is not on the path between C1 and C3.
2) C2 is on the path between C1 and C3.
When 1), there are two options to traverse C2 when going
from C1 to C3, i.e., an odd path across the cycle and an
even path across the cycle. Which means we can always
construct an even path between C1 and C3. When 2), the
three cycles have a mutual junction (let us call this vertex j)
of their chains. Let us denote the distances from the cycles
to this junction as p1, p2, and p3 respectively. If p1 is odd,
then if either p2 or p3 are odd we had an even path between
C1 and C2 or C3. But if both p2 and p3 are even, then the
path between C2 and C3 is even. A very similar argument
holds if p1 is even.

Theorem 6. In graphs containing no even cycles, check-
ing if they contain symmetric handcuffs can be done in poly-
nomial time.

Proof. From the above lemma it follows that we need
to focus only on the case where there are exactly two cycles
with the same cardinality. In the block decomposition tree,
there is a unique path between these two cycles. If this path
passes a block containing a cycle, then we have a symmetric
handcuff. This follows from the fact that we have two choices
of how to pass the cycle. One is of even length and one is
of odd length. As a consequence, there is always a path of
even length between the two cycles, making the handcuff
symmetric. If the unique path in the decomposition tree
passes no cycle, then it is unique also in the original graph,
and it is trivial to check the parity of its length.

Now we define an auxiliary problem, which will be used for
recognizing our last family of forbidden graphs, i.e. handcuff
pairs.

Definition 6. Pair choice problem We define a problem

where a sequences of pairs is given: a =
(a01
a11

)(a02
a12

)
. . .
(a0n
a1n

)
and an integer K.

The decision problem is whether a binary vector exists: x ∈
{0, 1}n such that

∑n
i=1 a

xi
i = K?

We can show that the problem of finding handcuff pairs in
a graph can be reduced to the pair choice problem in poly-
nomial time. The Pair-choice problem is an NP -complete
problem, since the subset-sum problem can easily be reduced
to the pair choice problem. But we can show how the lim-
ited versions of the pair choice problem can be solved in
polynomial time with dynamic programming, which can be
succinctly expressed with the following Bellmann equations:

s(0, 0) = 1,

s(i, k) = s(i− 1, k − a0i ) ∨ s(i− 1, k − a1i ),

Cm Cn

Figure 1: An example of a path between two cycles
(the black vertices). To check if, e.g. there is a
chain of size 7, we transform this subgraph into pairs(
5
4

)
,
(
5
2

)
.

where s(i, k) denotes the solution if only the first i pairs are
taken into account, and the goal sum is k. This algorithm is
polynomial (O(nK)), if the goal sum K is polynomial in n.
We can demonstrate that the problem of identifying hand-
cuff pairs can be reduced to an instance of the pair choice
problem, which can be solved in polynomial-time using the
above dynamic programming.

Theorem 7. In graphs containing no even cycles, and no
symmetric handcuffs checking if they contain handcuff pairs
(Hc

k,l, H
c
k,l) can be done in polynomial time.

Proof. In the tree of cycles, which we have when there
are no even cycles in the graph, there can be only O(n)
cycles. For each pair of pairs of cycles, i.e. (Ck, Cl), (Ck, Cl),
we check all the possible distances between the cycles in a
pair. This can be done by transforming every pair of cycles
into a pair choice problem in the following way. First, notice
there is a unique path between these cycles in the block
decomposition. For each block that is also a cycle in the
original graph, we create a pair, which represents the length
of two possible paths across the cycle. An example of this
reduction can be seen in Figure 1. In this way we can check
all possible length paths between the start and end cycle. If
the pars have a distance that coincides, than we have found
a handcuff pair.

6. CONCLUSIONS
This article answers an open question about recognizing a
special kind of graphs, namely the subgraph symmetry com-
pressible graphs. We showed that this problem is solvable in
polynomial time, which is also practically useful information
since it can be used in compression algorithms. A remaining
open question is the time complexity of SC graphs. Since
this problem is more closely related to the graph isomor-
phism problem, we believe it is at least GI-hard. In our
future work we will focus on the above open question and
on developing practical compression algorithms based on the
described concepts of SC and SSC graphs.
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ABSTRACT
This paper is devoted to propose a novel PRNG based on
compositions (temporal products of special Gluškov prod-
ucts) of abstract automata. Its utility shall be shown through
a simple example. However, several questions are subject of
future work, such as the analysis of further properties of the
PRNG, as well as related statistical testing.

Keywords
pseudorandom number generator, automata network, prod-
ucts of automata

1. INTRODUCTION
Certain cryptographical applications of abstract automata
compositions has already been considered in [1, 2, 3]. On the
line of this research, we propose a new pseudorandom num-
ber generator based on compositions of abstract automata.

For all notions and notation not defined here we refer to the
monographs [4, 5, 6, 9, 10].

2. PRELIMINARIES
Let us start with some standard concepts and notations.
By an (abstract) pseudorandom number generator we mean
a system PRNG = (K,S, s0, f, U, g), where K,S,U are fi-

nite nonempty sets, the so-called key space, state space, and
output space, respectively, s0 ∈ S is the seed, f : S → S is
the state transition function, and g : K × S → U is the out-
put function. We will say that the pseudorandom sequence
u1, u2, . . . , (u1, u2, . . . ∈ U) generated by the PRNG if we
have un = g(k, sn), where sn = f(sn−1) (n ∈ {1, 2 . . .}).

An automaton will be meant to be a deterministic finite
automaton without outputs. In more details, an automa-
ton is an algebraic structure A = (A,Σ, δ) consisting of the
nonempty and finite state set A, the nonempty and finite
input set Σ, and a transition function δ : A × Σ → A. The
elements of the state set are the states, whereas the elements
of the input set are the input signals.

The transition matrix of an automaton is a matrix with rows
corresponding to each input and columns corresponding to
each state. Given an entry corresponding to a row indicated
by an input x ∈ Σ and a column indicated by a state a ∈ A
the state δ(a, x) is put into the entry. If all rows of the
transition matrix are permutations of the state set then we
call it a permutation automaton.

3. THEORETICAL BACKGROUND
Next we recall some definitions. (See also [1].)

Let Ai = (Ai,Σi, δi) be automata where i ∈ {1, . . . , n}, n ≥
1. Take a finite nonvoid set Σ and a feedback function
ϕi : A1 × · · · × An × Σ → Σi for every i ∈ {1, . . . , n}. The
Gluškov-type product [7] of the automata Ai with respect
to the feedback functions ϕi (i ∈ {1, . . . , n}) is defined to
be the automaton A = A1 × · · · × An(Σ, (ϕ1, . . . , ϕn)) with
state set A = A1 × · · · × An, input set Σ, transition func-
tion δ, where the latter one is given by δ((a1, . . . , an), x) =
(δ1(a1, ϕ1(a1, . . . , an, x)), . . ., δn(an, ϕn(a1, . . . , an, x))) for all
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(a1, . . . , an) ∈ A and x ∈ Σ. In particular, if A1 = . . . = An

then we say that A is a Gluškov-type power.

Let At = (A,Σt, δt), t = 1, 2, be automata having a com-
mon state set A. Take a finite nonvoid set Σ and a mapping
ϕ of Σ into Σ1 × Σ2. Then the automaton A = (A,Σ, δ) is
a temporal product (t-product, see [8]) of A1 and A2 with
respect to Σ and ϕ if for any a ∈ A and x ∈ Σ, δ(a, x) =
δ2(δ1(a, x1), x2), where (x1, x2) = ϕ(x). The concept of tem-
poral product is generalized in a natural way to an arbitrary
finite family of n > 0 automata At (t = 1, . . . , n), all hav-
ing the same state set A, such that for any mapping ϕ : Σ→∏n

t=1 Σt, one defines δ(a, x) = δn(· · · δ2(δ1(a, x1), x2), · · · , xn)
when ϕ(x) = (x1, . . . , xn). In particular, a temporal prod-
uct of automata with a single factor is just a (one-to-many)
relabeling of the input letters of some input-subautomaton
of its factor.

Given a function f : X1 × · · · × Xn → Y , we say that f
is really independent of its i-th variable if for every pair
(x1, . . . , xn), (x1, . . . , xi−1, x

′
i, xi+1, . . . , xn) ∈ X1 × · · · ×Xn

we have f(x1, . . . , xn) = f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn).

Otherwise we say that f really depends on its i-th variable.

A (finite) directed graph (or, in short, a digraph) D = (V,E)
(of order n > 0) is a pair consisting of sets of vertices
V = {v1, . . . , vn} and edges E ⊆ V × V . Elements of V
are sometimes called nodes. If |V | = n then we also say
that D is a digraph of order n. In what follows we will as-
sume that V is an ordered set of integers 1, . . . n for some
positive integer n. Given a digraph D = (V,E) we say
that the above defined Gluškov product is a D-product if
for every pair i, j ∈ {1, . . . , n} we have that (i, j) /∈ E im-
plies that the feedback function ϕi is really independent of
its j-th variable. Now assume that Σ is the set of all bi-
nary strings with a given length ` > 0, n is a positive in-
teger power of 2, A1 = (Σ,Σ × Σ, δA1) is a permutation
automaton such that for every a, x, x′, y, y′ ∈ Σ, we have
δA1(a, (x, y)) 6= δA1(a(x′, y)), δA1(a, (x, y)) 6= δA1(a(x, y′)),
and let Ai = (Σ,Σ × Σ, δAi), i = 2, . . . , n be copies of A1.
Consider the following simple bipartite digraphs:

D1 = ({1, . . . , n}, {(n/2 + 1, 1), (n/2 + 2, 2), . . . , (n, n/2)}),
D2 = ({1, . . . , n}, {(n/4 + 1, 1), (n/4 + 2, 2), . . . , (n/2, n/4),
(3n/4 + 1, n/2 + 1), (3n/4 + 2, n/2 + 2), . . . , (n, 3n/4)}), . . .,
Dlog2n−1 = ({1, . . . , n}, {(3, 1), (4, 2), (7, 5), (8, 6), . . . ,
(n− 1, n− 3), (n, n− 2)}),
Dlog2n = ({1, . . . , n}, {(2, 1), (4, 3), . . . , (n, n− 1)}),
Dlog2n+1 = D1, . . . , D2log2n = Dlog2n.

For every digraph D = (V,E) with D ∈ {D1, . . . ,D2log2n}
let V1 be the set of all incoming edges and let V2 be the set of
all outgoing edges, and define furthermore the Gluškov-type
product (called two-phase D-product)
AD = A1×· · ·×An(Σn, (ϕ1, . . . , ϕn)) of A1, . . . ,An so that
for every (a1, . . . , an), (x1, . . . , xn) ∈ Σn, i ∈ {1, . . . , n} we
have ϕi(a1, . . . , an, (x1, . . . , xn)) = (aj ⊕ xj , xi) if (j, i) ∈ V1

and aj ⊕ xj is the bitwise addition modulo 2 of aj and
xj , ϕi(a1, . . . , an, (x1, . . . , xn)) = (a′j ⊕ xj , xi) if (j, i) ∈ V2,
where a′j denotes the state into which
ϕj(a1, . . . , an, (x1, . . . , xn)) takes the automaton from its state
aj , and a′j ⊕ xj is the bitwise addition modulo 2 of a′j and

xj .
1

Let B = (Σn, (Σn)2log2n, δB) be the temporal product of
AD1 , . . . ,AD2log2n with respect to (Σn)2log2n and the iden-

tity map ϕ : (Σn)2log2n → (Σn)2log2n. We say that B is a
key-automaton with respect to A1, . . . ,An.2 Obviously, B is
unambigously defined by the transition matrix of A1.

Theorem. Every key automaton transition function can be
applied as an output function of a pseudorandom number
generator.

Proof. Let B = (Σn, (Σn)2log2n, δB) be an above defined
key automaton. Moreover, let f : Σn → Σn be a bijective
function. Consider two random words u0, v0 ∈ Σn. For
every positive integer k let uk = f(uk−1). Define the output
function g such that for every positive integer k, we have
g(v0, uk) = δB(uk, v

2log2n
0 ). Then we can get the system

PRNG = (K,S, s0, f, U, g), where K(= {v0}) is a singleton
set, S = U = Σn and s0 = u0.

This completes the proof.

Remarks. It is shown in [1] that every key automaton
is a permutation automaton. In other words, for every
triplet u1, u2, x ∈ Σn, u1 6= u2 implies δB(u1, x

2log2n) 6=
δB(u2, x

2log2n). Therefore, for every seed u0 ∈ Σn and key
v0 ∈ Σn the length of the period of PRNG (i.e. the minimal
nonnegative integer k for which u0 and g(uk, v0) coincide)
is equal to the minimal number m for which u0 = f(um).
Consequently, if f generates a full cycle –i.e. {uk | uk =
f(uk−1, k ∈ {1, 2, . . .}} = Σn– then, of course, the length of
the period of PRNG does not depend on u0 or v0.

In [1] it is also shown that a small change in either the state
blocks or the input blocks results in a significant change
in the next state of the state transitions. In other words,
for every triplet u′0, u

′′
0 , v0 ∈ Σn, having u′0 6= u′′0 results

significant change in δB(u′0, v
2log2n
0 ) and δ(u′′0 , v

2log2n
0 ). On

the other hand, if f generates a full cycle and Σn is not a
singleton then for every pair u′0, u

′′
0 ∈ Σn we have that u′0 6=

u′′0 obviously implies u′k 6= u′′k whenever u′k = f(u′k−1), u′′k =

f(u′′k−1), k ∈ {1, 2, . . .} But then the pairs δB(u′k, v
2log2n
0 )

and δB(u′′k , v
2log2n
0 ) with u′k = f(u′k−1), u′′k = f(u′′k−1), k ∈

{1, 2, . . .} should also have significant differences.

4. EXAMPLE
Consider the following transition table of an automaton A =
({0, 1}, {0, 1}2, δ):

δ 0 1
00 0 1
01 1 0
10 1 0
11 0 1

1We note that for every j ∈ V2 there exists a unique i ∈ V1

with (j, i) ∈ E, and conversely, for every i ∈ V1 there exists
a unique j ∈ V2 with (j, i) ∈ E. Therefore, all of ϕ1, . . . , ϕn

are well-defined.
2Recall that n should be a power of 2.
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Let n = 4 and assume that all of A1,A2,A3,A4 coincide
with A. Then log2n)(= log24) = 2 and thus

D1 = ({1, . . . , 4}, {(3, 1), (4, 2)}),

D2 = ({1, . . . , 4}, {(2, 1), (4, 3)}.

Let v0 = (1, 0, 1, 0) be a fixed input signal of the key au-
tomaton B which is the temporal product of AD1 and AD2 .
Assume that B is in the state uk = (0, 1, 1, 0). Thus we have
(a1, a2, a3, a4) = (0, 1, 1, 0), (x1, x2, x3, x4) = (1, 0, 1, 0).

Denote by ϕi, ai, a
′
i, xi, i ∈ {1, 2, 3, 4} the feedback func-

tions, the state components, the next state components, and
the input components ofAD1 , respectively. Then ϕ1((0, 1, 1, 0),
1, 0, 1, 0) = (a3 ⊕ x3, x1) = (1⊕ 1, 1) = (1, 1), ϕ2((0, 1, 1, 0),
1, 0, 1, 0) = (a4 ⊕ x4, x2) = (0 ⊕ 0, 1) = (0, 1), moreover
δ(0, (1, 1)) = 0(= a′1) and δ(1, (0, 1)) = 0(= a′2)) and thus
ϕ3((0, 1, 1, 0), 1, 0, 1, 0) = (a′1 ⊕ x1, x3) = (0 ⊕ 1, 1) = (1, 1),
ϕ4((0, 1, 1, 0), 1, 0, 1, 0) = (a′2 ⊕ x2, x4) = (0 ⊕ 0, 0) = (0, 0).
Hence, δ(1, (1, 1)) = 1(= a′3) and δ(0, (0, 0)) = 0(= a′4).

Next we denote by ϕi, ai, a
′
i, xi, i ∈ {1, 2, 3, 4} the feedback

functions, the state components, the next state components,
and the input components of AD2 , respectively. Recall that
(a1, a2, a3, a4) coincides with the new state of AD1 . Thus
(a′1, a

′
2, a
′
3, a
′
4) = (0, 1, 1, 0), and again (x1, x2, x3, x4) = (1, 0, 1, 0).

Then ϕ1((0, 0, 1, 0), 1, 0, 1, 0) = (a2 ⊕ x2, x1) = (0 ⊕ 0, 1) =
(0, 1), ϕ3((0, 0, 1, 0), 1, 0, 1, 0) = (a4 ⊕ x4, x3) = (0 ⊕ 0, 1) =
(0, 1), moreover δ(0, (0, 1)) = 1(= a′1) and δ(0, (0, 1)) = 0(=
a′3)), and thus ϕ2((0, 0, 1, 0), 1, 0, 1, 0) = (a′1⊕x1, x2) = (1⊕
1, 0) = (1, 0), ϕ4((0, 0, 1, 0)1, 0, 1, 0) = (a′3 ⊕ x3, x4) = (0 ⊕
1, 0) = (1, 0). Hence δ(0, (1, 0)) = 1(= a′2) and δ(0, (1, 0)) =
1(= a′4).

Now let (a1, a2, a3, a4) = (1, 1, 0, 1) and again (x1, x2,
x3, x4) = (1, 0, 1, 0). Repeating the above procedure we get
the output (a′1, a

′
2, a
′
3, a
′
4) = g((a1, a2, a3, a4), (a1, a2, a3, a4))

in the following way.

Then ϕ1((1, 1, 0, 1), 1, 0, 1, 0) = (a3 ⊕ x3, x1) = (0 ⊕ 1, 1) =
(1, 1), ϕ2((1, 1, 0, 1), 1, 0, 1, 0) = (a4 ⊕ x4, x2) = (1 ⊕ 0, 1) =
(1, 1), moreover δ(1, (1, 1)) = 1(= a′1) and δ(1, (1, 1)) = 1(=
a′2)), and thus ϕ3((1, 1, 0, 1), 1, 0, 1, 0) = (a′1⊕x1, x3) = (1⊕
1, 1) = (0, 1), ϕ4((1, 1, 0, 1), 1, 0, 1, 0) = (a′2 ⊕ x2, x4) = (1⊕
0, 0) = (1, 0). Hence δ(0, (0, 1)) = 1(= a′3) and δ(1, (1, 0)) =
0(= a′4).

Now we have (a′1, a
′
2, a
′
3, a
′
4) = (1, 1, 1, 0), and again (x1, x2,

x3, x4) = (1, 0, 1, 0). Then ϕ1((1, 1, 1, 0), 1, 0, 1, 0) = (a2 ⊕
x2, x1) = (1⊕ 0, 1) = (1, 1), ϕ3((1, 1, 1, 0), 1, 0, 1, 0) = (a4 ⊕
x4, x3) = (0 ⊕ 0, 1) = (0, 1), moreover δ(1, (1, 1)) = 1(= a′1)
and δ(1, (0, 1)) = 0(= a′3)), and thus ϕ2((1, 1, 1, 1, 0), 1, 0, 1,
0) = (a′1⊕x1, x2) = (1⊕1, 0) = (0, 0), ϕ4((1, 1, 1, 0)1, 0, 1, 0)
= (a′3 ⊕ x3, x4) = (0⊕ 1, 0) = (1, 0). Thus δ(1, (0, 0)) = 1(=
a′2) and δ(0, (1, 0)) = 1(= a′4).

Hence the actual pseudorandom output is g((a1, a2, a3, a4),
(x1, x2, x3, x4)) = g((0, 1, 1, 0), (1, 0, 1, 0)) = (1, 1, 0, 1).

5. SOME TECHNICAL COMMENTS
Using the above mentioned parameters with 256 possible
states (1 byte long states) we need 16 automata having a
transition matrix 216 = 65536 lines and 28 = 256 columns.
Each cell of the automaton contains 1 byte long data (one
state). The size of the matrix is 16 megabytes and the num-
ber of the possible matrixes are 256!65536, where the excla-
mation mark means the factorial operation.

6. CONCLUSION AND FUTURE WORK
This paper is devoted to propose a novel PRNG based on the
compositions (temporal products of special Gluškov prod-
ucts) of abstract automata. Through a simple example we
have shown its utility. However, several questions are still
open for future work: a serious security analysis, evaluations
regarding the randomness, a rigorous machine-independent
investigation and discussion over how the PRNG proposed
in this article compares to the ones in the literature. Of
course, the interesting case is the one where the state tran-
sition function has a low computational complexity. (For
example, when it is a linear congruential generator.)

7. REFERENCES
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ABSTRACT
The manuscript presents the ongoing development of an
agent-based production network simulation framework. The
simulation is intended to analyze the high level (strategic
and tactical) planning problems decomposed into simple sub-
problems, similarly to the practical approach applied by the
Enterprise Resource Planning (ERP) systems. The back-
ground, the goals and the design of the framework are de-
scribed, and some preliminary experiments with the current
phase of the development are shown.
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1. INTRODUCTION
In recent years the shortening product life cycles and the
increasing product variety have led to complex production
networks with dynamic structure, fluctuating demand, em-
bedded in volatile environments. Handling such complex
and uncertain problems with exact mathematical optimiza-
tion models is time-consuming and usually impractical.

There are two main difficulties in creating practical planning
models. On the one hand, some parameters or dynamics are
unknown or uncertain, therefore they are only estimated or
approximated. For example, the demand curve usually as-
sumes a simple relationship between the price and the de-
mand, and completely disregards other important factors
that influence the market, such as sudden changes in cus-
tomers’ preferences. On the other hand, if a model contains
too many details, it can result in an overfitted solution. In
this case the plan might be optimal considering fixed param-
eters, however, any change in the environment—e.g., a late
supply or inappropriate quality—can cause a major change
in the execution. Due to these difficulties, the realization
usually diverges from the plan or the forecast.

In the industrial practice, commonly the basic planning algo-

rithms that are built into the ERP systems are used. These
general algorithms neglect several details of the problem,
but usually result in plans that have more room for adap-
tation and are more flexible to changes. Furthermore, they
are readily available, do not require additional software and
interface development, and frequently provide comparable
results to specialized optimization algorithms [5]. For ex-
ample, the scheduling algorithm of SAP APO computes the
order finish date simply by adding the production time to
the start time, where the production time is a sum of the
setup time, of the processing time multiplied by the quantity
and of the interoperation time [9]. This approach disregards
the capacity and the load of the resources, as well as the
possibilities of unexpected disturbances.

The goal of our current research is to develop a testbed for
studying production networks in a simulated volatile en-
vironment. The desired characteristics of the simulation
framework are to be general, modular and flexible. It should
allow modeling dynamic production networks in uncertain
environments, with a wide range of products, both mass
produced and customized. The decision problems consid-
ered are focused on the strategic and tactical levels. Each
node can apply different planning algorithms that are avail-
able in ERP systems. The performance of the network and
the nodes should be evaluated according to multiple criteria,
thus we are going to model various network footprints and
strategies (see [6]). The first application of the developed
framework is to study the fields of resilience, pricing and
trust in production networks.

Resilience corresponds to balancing robustness and agility
in supply chains [1]. Agility is the capability to react to
changes, while robustness is resulted by a proactive strategy
enabling to cope with turbulences without taking further
actions. Monostori [7] introduced measures of structural
and operational robustness of supply chains, and described
a framework for evaluating robustness, complexity and effi-
ciency. A supply chain simulation for evaluating robustness
and coordination is presented in [2].

Two types of uncertainty are especially relevant in supply
chains: stochastic events and low probability high impact dis-
ruptions [10]. The former ones can be forecasted based on
historic data and/or expert knowledge. These include fac-
tors such as demand fluctuation, production and transporta-
tion times, as well as raw material and transportation prices.
The disruptions, however, are rare, thus traditional forecast-
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Figure 1: Decision problems at each node of the
network.

ing techniques are inappropriate to handle them. These in-
clude events such as sudden disturbances at supply chain
members, unexpected damages, and natural disasters.

Pricing is also important in influencing the market demand,
and eventually, the profitability of the companies [11].

There are several approaches for collaboration in production
networks decreasing the undesirable effects such as double
marginalization or the bullwhip effect, see e.g., [12]. How-
ever, identifying the benefits of collaboration is still a chal-
lenge in supply chain management, and particularly in sup-
ply chain simulation [8]. Trust is a precondition of successful
collaboration, but it is rarely considered formally in decision
models, because it consists of a complex belief of depend-
ability, competence and integrity. One of the few exceptions
can be found in [4], where trust in a supplier is measured
as its average order fill rate, i.e., the number of supplied
goods divided by the number of ordered goods. The authors
have observed that using trust based supplier selection, the
robustness of the supply chain network increases.

2. THE SIMULATION FRAMEWORK
The simulation model is intended to be as general as possi-
ble. We consider a network consisting of nodes that are simi-
lar in the sense that each of them creates products, consumes
components and has the same decision problems illustrated
in Fig. 1. However, the specific products, components and
applied decision algorithms can be different. This character-
ization of the nodes is based on the high level model of the
Supply Chain Operations Reference (SCOR) and the supply
chain planning matrix, see [3]. The dynamic nature of the
network is also taken into consideration, i.e., nodes can en-
ter and exit, choose different sources of materials, therefore
changing the network structure.

As Fig. 1 shows, our model considers the higher strategic
and tactical planning levels and does not include opera-
tional problems such as shop floor control. These long- or
medium-term plans are more exposed to the uncertainties
that are in the focus of our study. The strategic problems
usually consider a one period planning horizon, oftentimes
a year. This is then divided into shorter periods for the
tactical decisions, where the horizon usually consists of mul-
tiple shorter periods, e.g., weeks. The main decisions con-
sidered in our model include capacity investment, supplier
selection (including single and dual sourcing), transporta-
tion modes (e.g., air, water, land), Make-to-Stock (MTS)
or Make-to-Order (MTO) production, pricing, quality con-
trol, order management, inventory control and procurement
decisions. It is assumed that these decisions are made se-
quentially and not simultaneously, which is often the case
in the practice. This is also true along the supply chains,
where it is common to assume Stackelberg-games, i.e., when
the leader decides first, then the follower reacts. The two
strategic tasks indicated in the figure with red color are the
ones we have started to implement and study first.

Most decision problems have the minimal cost or the max-
imal profit as their objective. But besides cost, there are
usually multiple important criteria that are considered in
practice, such as resource utilization. We consider three
types of Key Performance Indicators (KPIs) that cover the
most important aspects of the performance. The first type
includes financial indicators, such as profit and total cost,
which describe the economic sustainability. The second type
is related to the manufacturing efficiency, e.g., the Over-
all Equipment Effectiveness (OEE). The last type measures
supply chain related indicators, including service level, item
fill rate, inventory turnover and lead time between order
placement and delivery.

The description of the network is based on data generally
available in Enterprise Information Systems (EIS). The first
type of the data consists of information about the resources,
i.e., the network nodes. These include for example the lo-
cation of the nodes, their capabilities, costs and available
transportation modes. The second type is related to the
materials, including bills-of-materials (BOMs), demand fore-
casts, inventories and prices. The third type describes the
process, such as the production times and costs. Finally, the
fourth type is related to the operations, e.g., the realized de-
mand or the purchase orders.

The simulation includes uncertainties in form of stochas-
tic variables such as demand, component quality, produc-
tion and transportation times, material and transportation
prices. Besides, it also allows to generate sudden distur-
bances like perished shipments, resource outage and other
unexpected events.

Fig. 2 shows an overview of the system architecture. The
network model is given in an SQLite database which repre-
sents the different information systems containing the avail-
able data. The simulation model is automatically built,
which then provides the run-time behavior of the network,
including disturbances. The decision making functions are
implemented separately, in a modular way. This enables the
customization of the simulated system and also facilitates
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changing, analyzing and comparing different planning and
optimization rules. This way it can be used to find trade-
offs between different KPIs, such as cost and service level.

The simulations help to visualize and evaluate the conse-
quences of the decisions in the network, and to analyze typi-
cal scenarios, such as a new product introduction. The simu-
lation system is being developed with the AnyLogic tool [13],
which provides the possibility of applying any optimization
algorithms implemented in the Java language.

3. SUPPLIER SELECTION AND PRICING
PROBLEMS

In the following the notations for the formal decision prob-
lems are introduced. The models are assumed to be deter-
ministic, but in the simulation most of the parameters can
be randomized in order to investigate the impact of the dif-
ferent kinds of uncertainties. Furthermore, since this study
focuses on two strategic level decision problems, we omit the
parts of the model that are not required for these tasks, such
as the time-dependent prices and the transportation modes.
We also simplify our trust model for this study.

Let Ni (i = 1..n) denote the nodes in the network and ρij
is the distance between Ni and Nj . The transportation cost
between Ni and Nj is ρijC

(t). The transportation mode and
quality level (Qi) are considered to be already given, since
these optimization problems are ignored here.

The materials are denoted by Mk (k = 1..m). The pro-
duction portfolio is described by Yik, which equals 1 if Ni

producesMk, otherwise 0. The relationship between the ma-
terials is described by the BOMs: Bkl is the number of Ml

directly required for producing one unit of Mk. The same
material can be viewed as a product and as a component
by different nodes of the supply network (see Fig. 1). Unit

price of Mk at Ni (as the supplier) is Pik. The C
(p)
ik is the

unit production cost of Mk at Ni. In this study we assume
MTO production throughout the network, therefore we omit
the input (components) and output (products) inventories
from this description. The time required for the production

of one unit of Mk is T
(p)
k .

For each required component one or more supplier(s) should
be selected. Let Zijk denote the ratio of the component de-
mand for Mk that Nj orders from Ni. The total demand for
a component should be divided among its selected suppli-
ers, i.e., ∀j, k :

∑n
i=1 Zijk = 1. This way a node can decide

that a component should be supplied by only one supplier
(single sourcing), two suppliers with 50%-50% share, or any
other possibility. The set of the selected suppliers is called
the supplier basis of the node. For each supplier in the ba-
sis a C(b) one time cost occurs that can represent the cost
for building the connection between the nodes, e.g., sharing
product designs or connecting data interfaces.

The demand of Mk at Ni at time t is modeled with the
isoelastic function Dikt = DkP

−rk
ik , where rk > 1 is the

price elasticity and Dk is the maximum demand of Mk.

The supplier selection is based on the cost of the purchase
and the trust towards the suppliers. The cost consists of
the distance-based transportation cost and the price paid
for the components1. This latter assumes already known
unit prices of the components, i.e., the suppliers should de-
cide about the prices first. However, the demand for the
components can only be estimated without the knowledge
of any downstream pricing or supplier selection decisions.
The trust is considered in a simplified way for this study: if
the node does not trust in the suppliers, it chooses the dual
sourcing strategy instead of the single one.

The pricing decision depends on whether the product has a
market demand or used as a component for another prod-
uct. In case of a market product, the profit—disregarding

the constant transportation costs—is Dikt(Pik−C(p)
ik −C

(a)),

where C(a) denotes the total value of the consumed compo-
nents determined by the previous supplier selection. Using
the isoelastic demand function, the optimal price can be de-

rived and is given by P ∗
ik = rk(C

(p)
ik +C(a))/(rk−1). In case

of pricing a component, the demand should be estimated in
the same way as for the supplier selection problem. Then
the price is determined that provides a desired percent of
profit rate considering the estimated demand, the produc-
tion price, the total value of the components and the total
transportation cost.

4. PRELIMINARY EXPERIMENTS
In the preliminary experimental study a simple network has
been analyzed in order to evaluate the simulation frame-
work. Only the supplier selection and the pricing decisions
are included in the study, thus the other decisions are not
implemented or only simple rules are applied, such as the
lot-for-lot ordering policy. Five nodes are considered: one
end product manufacturer and four component suppliers—
two suppliers for both of the two components required for
the product. Each material is produced only to orders, i.e.,
no inventories are included. The quality of the production in
a node is considered to influence the production time: with
probability Qi the produced goods have acceptable quality,
otherwise additional rework is needed increasing the produc-
tion time.

1Note that in practice sometimes an even simpler rule is
applied considering only the component prices.
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Figure 3: Performance using different sourcing
strategies.

The trust is included in a straightforward way: the end prod-
uct manufacturer either trusts the suppliers and has a sin-
gle supplier for each component, or does not trust them and
applies dual sourcing. In both cases the decision about the
supplier basis depends on the estimated transportation and
purchasing costs described in the previous section.

The KPIs considered are the average lead time—i.e., the
time between receiving a customer order and satisfying it—
and the total profit. Both indicators are computed during
simulation runs over a one year horizon.

Fig. 3 illustrates the KPIs of the end product manufacturer
during 20 runs, half of them using single, the other half dual
sourcing strategies. The analysis shows the inversely pro-
portional relationship between the costs and the lead times.
Purchasing only from the most inexpensive suppliers results
in lower costs, which leads to a lower product price, higher
demand and eventually, higher profit. However, dual sourc-
ing performs better regarding to the lead time: the lower
component demand is further divided between the suppli-
ers who work in parallel, thus the components are available
more quickly reducing the lead time. The simulations sup-
port human decision makers to estimate the effects of their
decisions on the KPIs, which is even more important when
multiple complex decision problems are considered and the
performance of the network is hard to be analyzed exactly.

5. CONCLUSION AND FUTURE WORK
The paper reports an ongoing work of developing a sim-
ulation framework for analyzing the robustness of produc-
tion networks. The simulation model considers the common
strategic and tactical decision problems at each node. Pre-
liminary experiments are also demonstrated focusing on the
supplier selection and the product pricing problems.

The next step of the development is to implement several
basic decision making algorithms for each problem. The
framework then will be used for evaluating these algorithms
in different scenarios, e.g., new product introduction. Fur-
thermore, by implementing simple contract types such as
buyback or quantity discount, the effects of supply chain

collaboration can be analyzed.

The simulation system will be also deployed at our experi-
mental smart factory. That highly digitized production en-
vironment allows us to run simulations based on real data
available from the Manufacturing Execution System (MES).
The demonstration use case will enable analyzing the re-
silience and efficiency of the network consisting of the fac-
tory and its component suppliers.

6. ACKNOWLEDGMENTS
This research has been supported by the GINOP-2.3.2-15-
2016-00002 and the H2020 project EPIC No. 739592 grants.
The authors would like to thank to the anonymous reviewers
for their comments.

7. REFERENCES
[1] C. F. Durach, A. Wieland, and J. A. Machuca.

Antecedents and dimensions of supply chain
robustness: a systematic literature review.
International Journal of Physical Distribution &
Logistics Management, 45(1/2):118–137, 2015.

[2] P. Egri, B. Kádár, and J. Váncza. Towards
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When dealing with project scheduling problems, generally there are four basic parameters 

considered in connection with the activities, i.e. duration, resource constraints, logical 

connections to the other activities within the project including presence of precedence, and the 

mode of execution. As a special subfield, the multimode resource-constrained project 

scheduling problem (MRCPSP) has emerged and has gained significant attention recently. 

Here, the term multimode usually refers to the fact that each activity within the project can be 

executed within multiple duration time considering multiple resource allocations. When 

considering the resources that activities require, there are renewable resources, for example 

manpower, and nonrenewable resources, for example an overall budget. Obviously, these 

resources are always limited to some extent. In principle, when considering this kind of 

problems, during the project the resource requirements of the activities do not change over the 

time. Moreover, each activity must be performed in only one of the possible modes, and mode 

switching is not allowed during execution.  

A well known example of the above mentioned problem class is a large scale hydropower 

construction project, that was published by Xu and Feng (2014). They model the hydropower 

construction as three parallel subprojects, where uncertainties, fuzzy random environment and 

hybrid particle swarm optimization algorithms were considered, generating a single fixed real 

value as the duration of the activities, helping to minimize time and cost for the overall project. 

In the current paper the MRCPSP is extended, namely MRCPSP problems are considered where 

each activity may be executed in parallel in two different modes. First it is shown how a directed 

bipartite process network should be generated that represents the original MRCPSP issue. 

Second, the corresponding mathematical programming model is formulated. It is explained and 

illustrated, how multimode activities, called alternatives, may be executed in parallel to each 

other and yet be considered together. Time optimal and cost optimal mathematical 

programming models are given. Finally, the aforementioned hydropower construction project 

is presented as illustration.  
 

(1) Jiuping Xu and Cuiying Feng. Multimode Resource-Constrained Multiple Project 

Scheduling Problem under Fuzzy Random Environment and Its Application to a Large 

Scale Hydropower Construction Project. The Scientific World Journal. Volume 2014, 

Article ID 463692, http://dx.doi.org/10.1155/2014/463692. 
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ABSTRACT
In this paper, we study Transduced-Input Non-deterministic
Finite Automata with Translucent Letters, i.e., T-input-
NFAwtl and some closure properties of the class of languages
accepted by this model. Finite automata with translucent
letters are extensions of the usual finite state automata al-
lowing to proceed the input not strictly left to right man-
ner. T-inputFAwtl is a further extension of finite automata
with translucent letters. The input is preprocessed by a
finite state transducer and given to finite automata with
translucent letters, i.e., FAwtl. However, T-inputFAwtl has
more expressive power than FAwtl, because this new model
accepts some linguistically important not context-free lan-
guages which are not accepted by FAwtl. In this paper, we
show that the language class accepted by T-inputNFAwtl is
closed under union (if the same transducer is used), and it
is closed under intersection with regular languages.

Categories and Subject Descriptors
F.4.3 [Formal Languages]

General Terms
Theory, Automata, Languages

Keywords
t-input automata, automata with translucent letters, closure
properties, Mealy automata, formal languages, finite state
machines

1. INTRODUCTION
One of the main and most powerful branches of theoretical
computer science includes automata theory and formal lan-
guages. With ongoing development in this field, the main
purpose of studying automata theory is to develop such com-
putational models which are simple and have more expres-
sive power than the ones which are already developed. In-

stead of developing a really new model, we combine two
relatively simple finite-state machines, i.e., Mealy machines
and finite state automata, to obtain a still finite state model
with a relatively large accepting power.

Finite automata are used in text processing, formal linguis-
tics, and hardware design etc. The language class accepted
by finite automata is the class of regular languages. Finite
automata with translucent letter (FAwtl) is a more power-
ful model [15]. In each state there are some input letters
which are translucent. The automaton reads and erases
the first visible input letter on the tape. To understand
this in detail, one can read a closely related model: coop-
erative distributed systems of restarting automata [16, 17].
The accepted language is closed under regular operations:
union, concatenation and Kleene star and contains all ra-
tional trace languages [14, 16]. Its relation to linguistics is
studied in [12, 13]. The language class accepted by FAwtl
is a superset of the class of regular languages and includes
some non-context-free languages.

Here we study T-inputFAwtl, it is the extension of the fi-
nite automata with translucent letters. Mealy machines are
finite-state machines transforming the input to an output.
In our model, first, the input is transduced and, then, it is
given to a deterministic or non-deterministic FAwtl for de-
ciding the acceptance. We have proved in [11] that the im-
portant mildly context-sensitive, not context-free languages,
the multiple agreement {anbncn}, the cross dependencies
{anbmcndm} and the marked copy {wcw|w ∈ {a, b}∗} are
accepted by T-inputDFAwtl. These three languages are be-
longing to the linguistically important mildly context-sensi-
tive language classes [4, 10]. There are many other models,
which have generating/accepting power including these lan-
guages [1, 5, 18], but our model is finite state, and therefore,
with a moderate complexity.

In this paper, we are concentrating on some closure proper-
ties. In the next section we present some formal definitions
and an example. In Section 3 the main results are presented,
while Section 4 concludes the paper.

2. NOTATIONS AND DEFINITIONS
In this section we will recall the definitions and fix our no-
tations. We assume that the reader already knows the basic
concepts of finite automata and formal languages. For any
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further details, one can read standard textbooks, e.g., [2, 3,
8, 19].

A non-deterministic finite automaton (or finite state ma-
chine), an NFA, is a 5-tuple A = (Q,Σ, I, F, δ), where Q is
the finite set of internal states, Σ is the finite alphabet of
input letters, I ⊆ Q is the set of initial states, F ⊆ Q is
the set of final (or accepting) states and δ is the transition
relation of the form Q×Σ→ 2Q. If |I| = 1 and |δ(q, a)| ≤ 1
holds for all q ∈ Q, a ∈ Σ, then A is a deterministic finite
automaton, a DFA. The transition relation can be extended
to words w ∈ Σ∗, as usual. A word w is accepted by A if
qf ∈ δ(q0, w), where qf ∈ F, q0 ∈ I, i.e., δ(q0, w) includes
an accepting state. The set of all accepted words form the
language L(A) accepted by A. Finite automata are usually
represented by their graphs [2, 3, 8, 19].

A deterministic finite state transducer (FST), a Mealy au-
tomaton [9], is deterministic finite automaton which is trans-
forming the input to output (and does not accept a lan-
guage). Formally, it is a system T = (Q,Σ,∆, q0, γ), where
Q and Σ are the same as at DFA, q0 ∈ Q is the initial state.
∆ is the finite set of output symbols and γ is the transition
function of the form Q× Σ to Q×∆. Originally T is in its
initial state, the input tape contains an input word w ∈ Σ∗

and the output tape is empty. When T reads a letter from
the input tape, it writes an output letter to the output tape
(concatenating it to the previously written letters if any)
and changes its state accordingly. By T (w) ∈ ∆∗ we denote
the output produced by T on input w. FSTs can also be
represented by their graphs.

Now we recall the concept of non-deterministic finite au-
tomaton with translucent letters (NFAwtl) from [12, 13, 14,
15, 16, 17]. Formally, it is a septuple A = (Q,Σ, $, τ, I, F, δ),
where Q, Σ, I and F are the same as at NFA, $ /∈ Σ is
a special symbol that is used as an end marker of the in-
put, τ is the translucency mapping of the form Q→ 2Σ and
δ : Q×Σ→ 2Q is the transition relation that satisfies the fol-
lowing condition: ∀q ∈ Q, ∀a ∈ τ(q) : δ(q, a) = ∅. For each
state q ∈ Q, the letters from the set τ(q) are translucent for
q. A is called DFAwtl (deterministic FAwtl), if |I| = 1 and
|δ(q, a)| ≤ 1 holds for all q ∈ Q, a ∈ Σ. The automaton A
starts the process from an initial state and the whole input
w with end marker, i.e., w$ is on the input tape. If A is in
a state q and its tape content is of the form uav$ such that
u ∈ (τ(q))∗, a /∈ τ(q), v ∈ Σ∗, A erases the first occurrence
of the non-translucent letter a, obtaining the tape content
uv$ and changing the state to a state in δ(q, a). When-
ever, there is no transition is defined on letter a, A could
not continue the computation and rejects. Otherwise, if the
tape content is u$ such that u ∈ (τ(q))∗ in a state q, the
input w is accepted if q ∈ F and rejected if q /∈ F . The
set of accepted words w is the accepted language L(A). An
NFAwtl may not process the input strictly from left to right
and may accept a word without reading/erasing all of its
letters due to the translucency mapping. Deterministic and
non-deterministic FAwtl can also be given by their graphs
[12, 13, 15].

Further, the model FAwtl is extended in such a way that the
input is preprocessed by an FST. This new model is intro-
duced recently in [11] and it is motivated by [6, 7] where var-

Figure 1: The T-inputDFAwtl that accepts the lan-
guage Lc.

ious types of pushdown automata had such a preprocessed
input. The formal definition of our new cascade/combo au-
tomata is as follows.

Definition 1. Let A be an NFAwtl and T = (Q,Σ,∆, q0,
γ) be a Mealy machine such that the output alphabet ∆ of T
is the same as the input alphabet of A. Then, the pair (T,A)
is called a transduced-input non-deterministic finite automa-
ton with translucent letters, i.e. T-inputNFAwtl shorty. The
language accepted by the combined automata (T,A) is de-
fined as

L(T,A) = {w ∈ Σ∗|T (w) ∈ L(A)}.

It is shown in [11] that this type of combo machines accept
three important non-context-free languages where both the
Mealy machine T and the FAwtl A are deterministic. Now
we give another example for a T-inputNFAwtl.

Example 1. The language Lc =
{
cnwcnwcn|w ∈ {a, b}+ and

n > 0} is accepted by the T-inputNFAwtl presented graphi-
cally in Figure 1. The figure shows the graphical representa-
tion of the transducer T (up) and the NFAwtl A (bottom).
The Mealy automaton T has the following roles:

• It checks if the input is of the form c+(a+ b)+c+(a+

28



b)+c+; particularly if there are three factors of letter
c in the input word, moreover, they are separated by
non-empty words over {a, b}. Whenever the form of
the input does not match, T puts at least one x to the
output tape noticing this fact.

• T rewrites the second and third blocks of c’s to d’s and
g’s, respectively.

• It also rewrites the second block over {a, b} by the
alphabetic morphism h(a) = e, h(b) = f , in this way
the original letters a and b are mapped to e and f ,
respectively, on the output tape of T in this block.

At the NFAwtl A, the set of translucent letters is shown at
each state. Observe that in fact, A is also deterministic, it is
a DFAwtl. It works as follows. In its initial state, which is
also the only final state, there is no translucent letter, thus
it must read the first letter of the word T passes to it. By
the transitions of its first three states, it erases a letter c,
a letter d and a letter g, thus in this cycle it checks if the
number of c’s and d’s and g’s are the same. If in the original
input the format was appropriate, and the number of the
c’s in each of the three blocks were the same, then and only
then, all c’s, d’s and g’s are erased by A. Otherwise, either
it gets stuck (if there were more c’s in the first block than
in any of the other blocks) or some d’s and/or g’s are left
(if the first block of c’s was shorter than the other blocks).
In the second phase of the computation states q0, q3 and q4
are used (in an accepting run). A erases the first letter of
the remaining input, and depending on if it is an a or a b, q3
or q4 is reached. From this state the original letters a and b
are both translucent, and the first letter of the other block,
an e or an f is read such that it must fits to the previously
read original letter. Observe that A cannot read any letter
x. Therefore, it follows that (T,A) accepts the language Lc.

For instance, the input word cabcabc is in the language Lc. T
preprocesses it as follows. The preprocessing starts at state
p0. The first c is kept in the transduced input as c, and state
p1 is reached. Then the first a is kept in the transduced input
as a, then b has also been kept, and state p2 is reached. After
that c is rewritten to d, and state p3 is reached. Here, the
next letter, a, is rewritten to e, similarly b is transformed to
f , and state p4 is reached. Then c is transduced to g, and p5

is reached. Thus, the word cabdefg is obtained and passed
to A with the end marker $. In its initial state q0 nothing
is translucent, therefore first letter c is read and state q1
is reached with remaining input abdefg$. Here a, b and c
are translucent, thus A reads d (which is the image of the
second c) by changing its state to q2 with remaining input
abefg$. Here again a, b, c, and also d, e, f are translucent,
therefore A reads g (which in fact refers for the third block
of c’s) by changing its state back to q0 with remaining input
abef$. Here nothing is translucent, and now the first letter
is a. A reads it and state q3 is reached with remaining input
bef$. Here a and b are translucent, thus, e is read from
the remaining input and A moves into the state q0 with
remaining input bf$. Here, there is no translucent letter, b
is read and state q4 is reached. Here a and b are translucent,
the last letter f is read and A moves into its accepting state
q0 with a fully processed input. Thus, the string cabcabc is
accepted by (T,A).

On the other hand, for example the input word abcabc is
preprocessed by the Mealy automaton T to xxxxxx. It is
clearly not accepted by A. The word abcabc is not in the
language Lc. Observe that A cannot read any letter x be-
cause no transition is defined with letter x. It is used as a
kind of failure symbol.

To present some closure property results in Section 3 we
need to recall that all NFAwtl can be converted into normal
form. In [16] (Theorem 6.5) it is proven that every NFAwtl
A has an equivalent NFAwtl A′ accepting the same language
with special properties.

Definition 2. An NFAwtl A is in normal form if the fol-
lowing conditions hold
– In each state there is exactly 1 letter for which transitions
are allowed.
– The last occurrence of each letter a ∈ Σ of the input word
is erased in a transition (from a state) such that the translu-
cency mapping is empty.
– Every input letter is processed in an accepting computa-
tion.
– The automaton has exactly 1 accepting state.

A kind of extension of the normal form is helpful to prove
some of the closure properties shown in the next section.

3. RESULTS
In this section we present two of the closure properties of the
language class accepted by T-inputNFAwtl. First, the reg-
ular operation union is studied, we show that the language
class accepted by NFAwtl is closed under union if the same
transducer is used.

Theorem 1. Let (T,A1) and (T,A2) be T-inputNFAwtl.
The union of the languages accepted by (T,A1) and (T,A2)
is also accepted by a transduced-input non-deterministic fi-
nite automaton with translucent letters with transducer T .

Proof. Given the T-inputNFAwtl (T,A1) and (T,A2),
where T = (Q,Σ,∆, q0, γ) is a Mealy machine and A1 =
(Q1,∆, $, τ1, I1, F1, δ1), A2 = (Q2,∆, $, τ2, I2, F2, δ2) are two
NFAwtl, we will construct the combined automaton (T,B),
where B is an NFAwtl such that L(T,A1) ∪ L(T,A2) =
L(T,B).

Without loss of generality, we may assume that Q1∩Q2 = ∅.

Then, let B = (Q1 ∪ Q2,∆, $, τ, I1 ∪ I2, F1 ∪ F2, δ), where

δ(q) =

{
δ1(q) if q ∈ Q1

δ2(q) if q ∈ Q2

and τ(q) =

{
τ1(q) if q ∈ Q1

τ2(q) if q ∈ Q2.

Since there is no interference between the computations done
by A1 and A2 encoded in B, each of the accepting (and
non-accepting) computations of A1 and A2 has a one-to-one
correspondence with an accepting (non-accepting) compu-
tation of B, respectively. Thus, L(B) = L(A1)∪L(A2), and
therefore, L(T,A1) ∪ L(T,A2) = L(T,B).

Now we turn to another interesting closure property, namely
we study intersection by regular languages.
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Theorem 2. The language class accepted by T-input
NFAwtl is closed under intersection with regular languages.

Proof. We present the idea of the proof. Let T be a
deterministic transducer, A is an NFAwtl, and B is a DFA.
We want the intersection of the language accepted by the T-
inputNFAwtl (T,A) and by B. To do this, the “intersection”
of T and B is constructed, i.e., the transducer T ′ and then,
its output is forwarded to A′ (which is based on the normal
form of the NFAwtl A).

The intersection of the two finite state machines T and B is
done by the usual cross-product method, however, here one
of the automata is an accepting machine while the other, and
as well as the resulted automata, are transducers. In what
follows, the accepting states of B must be encoded in the
output allowing the NFAwtl A′ to check also this condition.
Thus, the output alphabet of T is doubled, and whenever,
B is in accepting state (which is clearly identified since B is
a DFA) in its process, a marked output letter (such as a) is
written in the output tape (instead the original output letter
a) allowing to distinguish the positions where the prefix of
the input is also in the regular language defined by B or not.

However, since NFAwtl may proceed the input in a not usual
left-to-right way, we need to be careful how to know that the
input is in both of the languages of (T,A) and B. To do this,
we can built A′ to fulfill some additional properties.

Without loss of generality, we assume that A is given in
normal form as we have recalled in the end of Section 2.
The NFAwtl A′ should also be in normal form, moreover,
it is modified in such a way that it also fulfils the following
properties:
– the states of A are doubled, there is a state for transitions
for an original input letter and there is also a copy with
transitions of its marked version.
– the translucency mapping for each state contains both the
original and the marked version of the given letters.
– there is only one accepting state.
– empty translucency mapping when reading the last letter.
– the last input letter must be a marked one.

That is, in the new normal form, in the NFAwtl, all accept-
ing computations erase the entire input word and one can
also be sure when the last letter of the input is processed. In
this way the condition to be in the language L(B) can also
be checked by A′. In this way, (T ′, A′) is a T-inputNFAwtl
and L(T,A) ∩ L(B) = L(T ′, A′).

4. CONCLUSIONS
In this paper some closure properties of a relatively new
class of languages are studied. Particularly, we have shown
that the language class accepted by T-inputNFAwtl is closed
under union with same signatures (where same signature
means that the same transducer is used for preprocessing).
Also, it was shown that the language class of T-inputNFAwtl
is closed under intersection with regular languages. Future
work includes the investigation of other closure properties
with other cases of deterministic/non-deterministic versions
of T-inputFAwtl with and without assuming the same sig-
natures.
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ABSTRACT
Interval Branch and Bound methods (IBB) are used when
rigorous solutions are needed for Nonlinear Programming
(NLP) problems. Nowadays, various implementations of
IBB exist, although many of them do not use the Karush-
Kuhn-Tucker (KKT) or Fritz-John (FJ) optimality condi-
tions for eliminating non-optimal boxes. When it is used,
it is used only in the general form, where an interval linear
system of equations needs to be solved. This is rather time-
consuming, and in many cases it has a negative outcome:
the tested box cannot be removed because with the overes-
timation on the inclusion of the gradients one can find that
the optimality conditions may fulfill. In order to save unnec-
essary computations, the common rule is to apply such tests
only when the box is “small enough”. However, depending
on the problem at hand “small enough” might be difficult to
predict.

The idea in this research is to investigate the use of the
optimality conditions from a geometrical point of view and
to minimize the computational effort when the optimality
conditions cannot be used to discard the given box. In this
way, there is no need to predict when to apply the test on
optimality conditions and so it may become more efficient.
In this paper, we describe a method that checks if the conic
hull of the enclosure of the gradients of the active constraints
is not full, so the test can have a positive outcome.
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G.1.6 [Optimization]: Constrained optimization, Global
optimization; G.4 [Mathematical Software]: Algorithm
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1. INTRODUCTION
There are many applications in physics, chemistry, and even
engineering fields, where a rigorous solution of a mathemat-
ical program is sought. A Nonlinear Programming problem
with difficult constraints can be solved in reasonable time
only for low-dimensional instances. We consider the follow-
ing problem,

min
x∈[a,b]

f(x)

s.t. gi(x) ≤ 0, i = 1, . . . ,m,
(1)

where [a, b] ⊆ Rn denotes a general bound constraint, f
and gi, i = 1, . . . ,m are continuously differentiable nonlin-
ear functions. In order to find the global optimum, spa-
tial Branch and Bound methods are usually used, where the
search space is divided into smaller regions, thus the original
problem is replaced with smaller sub-problems. For the sub-
problems, lower and upper bounds are computed and their
feasibility is checked, so suboptimal or unfeasible regions can
be removed from the sub-problems. For rigorous computa-
tions of the bounds, interval arithmetics is one of the best
choices. It guarantees that rounding errors are taken into
account automatically, and even approximated parameters
can be included with their validated enclosures such that
all errors are included. In the literature, these methods are
called Interval Branch and Bound methods (IBB).

2. INTERVAL BRANCH AND BOUND
METHOD

First, we briefly summarize the fundamental concepts of in-
terval analysis and introduce the prototype IBB algorithm.
For more details, the interested reader is referred to [2, 4].

2.1 Interval Arithmetics
Following the usual notation in literature, real numbers and
vectors are denoted by x, y, . . ., intervals and interval vec-
tors are denoted by x = [x, x],y = [y, y], . . ., where compo-
nents of vectors are distinguished from the vectors by use
of subscripts, i.e. x = (x1, . . . , xn), x = (x1, . . . , xn); while
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matrices are denoted by A,B, . . .. Brackets “[·]” delimit in-
tervals, while parentheses “(·)” vectors and matrices. Under-
lines will denote lower bounds of intervals and overlines give
upper bounds of intervals. The midpoint of an interval x is
denoted by m(x) = x+x

2
, its width by w(x) = x − x. The

midpoint of an interval vector x = (x1, . . . ,xn)T is given
by m(x) = (m(x1), . . . ,m(xn))T , whereas its width is to be
understood as w(x) = max{w(xi) : i = 1, . . . , n}. The set of
intervals will be denoted by I, and the set of n-dimensional
interval vectors, also called boxes, by In.

The interval arithmetic operations are defined by

x ∗ y = {x ∗ y : x ∈ x, y ∈ y} for x,y ∈ I, (2)

where the symbol ∗ stands for +,−, · and /, where x/y is
only defined if 0 6∈ y. Definition (2) is equivalent to simple
constructive rules (see [2, 4]).

Definition 1. A function f : In → I is called an inclusion
function of f : Rn → R if it fulfills that

{f(x) : x ∈ x} ⊆ f(x)

for all boxes x ⊂ In within the domain of f .

Observe that if f is an inclusion function for f then we can
directly obtain lower bounds and upper bounds of f over
any box x within the domain of f just by taking f(x) and
f(x), respectively.

For a function h predeclared in some programming language
(like sin, exp, etc.), it is not too difficult to obtain a prede-
clared inclusion function h since the monotonicity intervals
of predeclared functions are well known and then we can
take h(x) = {h(x) : x ∈ x} for any x ∈ I in the domain of
h. For a general function f(x), x ∈ Rn, the easiest method
to obtain an inclusion function is the natural interval ex-
tension, which is obtained by replacing each occurrence of
the variable x with a box x including it, each occurrence
of a predeclared function h with its corresponding inclusion
function h, and the real arithmetic operators with the corre-
sponding interval operators. Other inclusion functions have
been proposed in the literature, from those the most widely
used is the centered form

fc(x) = f(c) +∇f(x)(x− c),

where c ∈ x is usually the midpoint, and ∇f(x) is the in-
clusion of the gradient of f over x. It is generally computed
by the use of Automatic Differentiation (AD), see [1]. In
short, AD use operator overloading to compute the gradient
along with the function evaluation, where also higher-order
derivatives can be evaluated.

2.2 The prototype Interval Branch and Bound
algorithm

In an IBB algorithm, there are five main steps: selection,
bounding, discarding, division, and termination (see Algo-
rithm 1). These steps have to be specified for a given im-
plementation and their choices can have a huge effect on the
efficiency of the method. Since we are going to focus only on
one discarding test, the remaining steps are done as general.

The usual selection rule consists of choosing a box with the
smallest lower bound on the objective function f(x) from the
list of generated and non-rejected boxes (working list LW ).

For the bounding rule, we have used both the natural inter-
val extension and the centered form, as these are the most
widely used inclusion functions.

The branching rule applied here is bisecting the two widest
dimensions of the actual box in one step, generating four
boxes at once.

The termination rule is either based on the width of the
box, w(x) or on the width of the inclusion of the objective,
w(f(x)) (sometimes both). In this study, w(x) < ε was used
since this is the most general rule for termination.

The general discarding tests are the midpoint and cut-off
tests, these are always included in an IBB method. Namely,
if the current upper bound of the minimum, f̃ is smaller
then the lower bound f(x), the box can be discarded as
it cannot contain the global minimum. Monotonicity test,
non-convexity test, and the interval Newton method can be
used when no constraints are present, in the opposite case
feasibility tests and the KKT or FJ optimality conditions
can be applied.

The feasibility test works as follows. A box x is feasible if it
satisfies all the constraints, i.e. gi(x) ≤ 0, ∀i = 1, . . . ,m, in-
feasible if it does not satisfy at least one of the constraints,
∃j,g

j
(x) > 0, and undetermined otherwise. The feasibil-

ity test discards boxes that are infeasible, and marks those
boxes as feasible which satisfy all the constraints. It can also
provide information about the active constraints, A = {i |
0 ∈ gi(x), i = 1, . . . ,m}. Notice that to apply this test we
just need an inclusion function gi for each constraints.

In the next section, we will discuss in more detail the KKT
and FJ optimality conditions, what we will study later on
from a geometric perspective.

3. OPTIMALITY CONDITIONS
Necessary optimality conditions can be used to discard re-
gions of the search space which fail to fulfill them. In uncon-
strained optimization, it is enough to check the monotonic-
ity of the objective function. The box with the objective
being monotonous can either be discarded or shrank to the
facet with its minimizer that belongs to the boundary of
the search space. For the constrained case it becomes much
more complicated.

For problem (1) the Fritz-John optimality conditions state
that for any local optimizer point x there exist multipliers
µi ≥ 0, i = 0, . . . ,m, such that

µ0∇f(x) +

m∑
i=1

µi∇gi(x) = 0 (3)

µigi(x) = 0 i = 1, . . . ,m (4)

The case when µ0 > 0 is equivalent to the Karush-Kuhn-
Tucker conditions when constraint qualifications hold, while
µ0 = 0 means that the Mangasarian–Fromovitz constraint
qualification (MFCQ) does not hold.
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Algorithm 1: Prototype Interval Branch and Bound

1 LW ← [a, b], LS ← ∅
2 while ( LW 6= ∅ ) do
3 Select a box x from LW // Selection Rule

4 Compute bounds for f(x),gj(x), j = 1, . . . ,m // Bounding Rule

5 if (x cannot be discarded) then // Discarding Tests

6 Divide x into subboxes x1, . . . ,xs // Division Rule

7 for i = 1 to s do
8 if (xi satisfies the termination criterion) then // Termination Rule

9 Store xi in LS
10 else
11 Store xi in LW

12 return LS

Conditions (4) can be omitted if in (3) only active con-
straints are considered (constraint gi is active at x if gi(x) =
0).

The straightforward extension of these optimality conditions
is to solve the interval valued system of equations

µ0∇f(x) +

m∑
i=1

µi∇gi(x) = 0 (5)

µigi(x) = 0 i = 1, . . . ,m (6)

for a given box x with µi = [0,M ] (using a big enough M
[2]). By solving such an interval valued system of equations,
we either discard the box, if no solution exists, or narrow it
to the solution box otherwise. However, if the enclosures of
the gradients are too wide we cannot remove any part of the
box.

3.1 Geometrical interpretation of the optimal-
ity conditions

Many textbooks give a nice figure to show the graphical
meaning of the optimality conditions such as Figure 1 taken
from [3].

x*

f x*( )

x( )=0 g2x( )=0 g1

g2 x*( )g1 x*( )

X

-

r

Figure 1: Graphical meaning of the optimality con-
ditions, r is a feasible direction.

We can see the feasible directions, like r, in the gray feasible
area, and the gradient vectors at the optimizer point x∗.

Graphically, the necessary condition is that −∇f(x) has to
be in the conic hull of the gradients ∇gi(x) of the active
constraints.

In the interval world, instead of point x∗, we have a box x,
and instead of the gradients, enclosures of the gradients are
given. The graphical interpretation can be seen in Figure 2.
Let us note that in this case if the enclosure of a gradient
contains 0 in its interior, it contains all directions. It follows
that even if one constraint i fulfills that 0 ∈ int(∇gi(x)) the
conic hull is full, so it will contain all directions of ∇f(x)
(int refers to the interior of a set).

Figure 2: Graphical interpretation of the optimality
conditions with enclosures of the gradients.

If int(∇f(x)) contains 0, so its conic hull is full, there are
always directions which are contained in the conic hull C
of the active gradients. Thus, the box cannot be removed,
although it may be narrowed by propagating the gradients
in ∇f(x) which are not in C.

4. GEOMETRIC OPTIMALITY TEST
Instead of solving directly the interval-valued linear system
(3)-(4), we want to build a method which returns as soon as
we know that the test cannot succeed.

The final procedure will build the conic hull of the gradients
of the active constraints and will check the intersection of
∇f(x) with this conic hull. If the intersection is empty, the
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box can be deleted as no point exists in it which could fulfill
the optimality conditions.

To achieve this, we first seek the normal vector of the hy-
perplane which separates the gradient boxes of the active
constraints from the origin. Taking the conical projection of
the boxes on this hyperplane, one can compute the convex
hull of the projected boxes to get the conic hull of the original
boxes. If no separating hyperplane exists, the test cannot
remove any part of the box, so we stop. Otherwise, the nor-
mal vector of the hyperplane, v, will be computed. Here, we
only discuss this phase, because it already can speed up the
IBB algorithm by skipping the calculation of the solution of
an interval-valued system of equations.

The separating hyperplane search method is described in
Algorithm 2. As a first step in line 3, we check and store the
active constraints into the index set A. In fact, we only need
to check if the box x is undetermined for a given constraint.
Then, in line 4, if either one of the gradients of the active
constraints or the gradient of the objective function contains
0, we stop. We do this, because in the first case no discard-

Algorithm 2: Separating hyperplane search x

1 SeparatingHyperplane(x,∇gi(x))
2 v = 0
3 A = {i = 1, . . . ,m | 0 ∈ gi(x)}

// set of active constraints

4 if ∃i ∈ A, 0 ∈ int(∇gi(x)) or 0 ∈ int(∇f(x))
then

5 return false

6 for ∀j ∈ D := {1, . . . , n} do
7 M+

j = {i ∈ A | ∇jgi(x) > 0}
8 M−j = {i ∈ A | ∇jgi(x) < 0}
9 Mj = M+

j ∪M
−
j

10 if ∃j : M+
j = A (or ∃j : M−j = A) then

11 vj = min
i∈M+

j
∇jgi(x)

(or max
i∈M−

j
∇jgi(x))

12 return v

13 Conf = {j : |M+
j | > 0 and |M−j | > 0}

14 for j ∈ Conf do
15 if 6 ∃(l ∈ D, ∗,× ∈ {+,−}) : M∗j ⊆M×l then
16 return false // conic hull is full

17 if Mj ⊆M+
l then

18 vl = mini,k{∇lgi(x),∇lgk(x)}
19 if Mj ⊆M−l then
20 vl = maxi,k{∇lgi(x),∇lgk(x)}
21 if ∃(l ∈ D, ∗,× ∈ {+,−}) : M∗j ⊆M×l then

// Translate the case to the

positive quadrant

22 vj = 1
23 Gij = ∗∇jgi(x) ∀i ∈Mj // ∗ ∈ {+,−}
24 Gil = ×∇lgi(x) ∀i ∈Ml // × ∈ {+,−}
25 if vl = min

i∈M∗
j ,k∈M×

l

{
Gkj

Gkl
−

Gij

Gil

}
> 0

then return v else return false

ing is possible, while in the second case chances to reduce
the box are too small. In steps 6-9 we collect for each di-
rection j the monotonous constraints into sets M+

j and M−j
depending on the sign of the gradient in dimension j. In
lines 10-12, if for a direction j all active constraints are ei-
ther monotone increasing or monotone decreasing, then the
separating hyperplane exists and vj is either the minimal
lower bound or the maximal upper bound of the gradient’s
enclosures.

In line 13 the conflicting directions are collected to Conf ,
that is, a coordinate direction where there are both mono-
tone increasing and monotone decreasing constraints. From
line 14 to 25 we try to resolve these conflicting cases if pos-
sible and return if not as follows.

First of all, in lines 15-16, a conflicting direction j can only
be resolved if a monotonous direction l exists where all M+

j

or M−j constraints are included in M+
l or M−l . If no such

monotonous direction exists, there is no separating hyper-
plane, thus the conic hull is full and the test cannot delete
any part of the box x. On the positive side, if there is a co-
ordinate direction j where all conflicting constraints are all
monotone increasing (resp. decreasing), then vl can be set
to be the maximal upper bound (resp. the minimal lower
bound) of the involved constraints (see lines 17-20).

In the last part, lines 21-25, we deal with the case where all
the monotone increasing (or decreasing) constraints are also
monotone increasing (or decreasing) in another direction,
that is, M+

j ⊆ M+
l , or M−j ⊆ M+

l , or M−j ⊆ M+
l , or

M−j ⊆ M−l . Here it is easier to handle everything in one
case, so we translate it to the positive quadrant, and check
if vl > 0. If this is the case, the conflict can be solved.

5. SUMMARY
We have built a procedure which tests if the conic hull of
the gradients of the active constraints can be generated such
that it is not full. If the procedure returns v, we can take
further steps trying to discard parts of the examined box,
while if the procedure returns false, we already know that
the optimality test could not discard any part of the box.
We expect that this method can be efficiently used as a filter
before any optimality test.
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ABSTRACT
In this paper we show that the (uniform) membership prob-
lem for permitting random context grammars is NP-hard.
A similar result is shown for a restricted class of forbidding
random context grammars.

Keywords
Random context grammars, membership problem, complex-
ity, NP-hardness

1. INTRODUCTION
Given a class F of formal language representations, one of
the most important questions concerning F is the complex-
ity of its (uniform) membership problem which sounds as
follows. Given a formal language representation F ∈ F and
a string w, decide if w is in the language represented by F .
Clearly, for practical applications a polynomial-time solvable
membership problem is desirable.

In this work we investigate the complexity of the member-
ship problem for some classes of random context grammars
(RCGs, for short) [9]. These grammars are such extensions
of context-free grammars, where two sets of nonterminals,
a permitting set P and a forbidding one Q, are associated
to every context-free rule. Then a rule is applicable if it is
applicable in the context-free sense, and nonterminals in Q
do not occur while every nonterminal in P does occur in the
current sentential form. If in an RCG each rule is associated
with an empty forbidding set (resp. permitting set), then
the grammar is called a permitting (resp. forbidding) RCG.
These grammars were widely investigated as they are sim-
ple yet powerful extensions of context-free grammars (see
e.g. [1, 2, 3, 4, 5, 6, 10] and the references therein).

It is known that the membership problem for forbidding
RCGs is NP-hard even if the use of erasing rules are not al-

lowed (see e.g. Chapter 3 in [7] and the references therein).
On the other hand, to the best of our knowledge, it is not
known if there is a polynomial-time algorithm to solve the
membership problem for permitting RCGs. In this work we
show that there is no such an algorithm unless P = NP. In
fact, we are going to show that there is an efficient reduc-
tion of the 3-partition problem, a well known NP-complete
problem, to the membership problem of permitting RCGs
with no erasing rules.

There is a restriction of RCGs where different rules with the
same nonterminal on the left-hand side should be associated
with the same permitting and forbidding sets. Moreover,
one of these sets is always a singleton and the other one is
empty [6]. We refer to this variant in this paper as restricted
random context grammars. It is shown in [1] that for every
permitting RCG G an equivalent restricted permitting RCG
G′ can be efficiently constructed such thatG employs erasing
rules if and only if G′ does. Using this and the NP-hardness
of the membership problem for permitting RCGs we can
easily conclude that the membership problem for restricted
permitting RCGs with no erasing rules is NP-hard, too.

It is known that restricted forbidding RCGs are equivalent
to forbidding RCGs if erasing rules are allowed to use [5].
Moreover, the construction presented in [5] is an efficient
one. Thus, in this case the NP-hardness of the membership
problem for the restricted variant follows from the known
NP-hardness of this problem for the unrestricted variant.
On the other hand, it is open whether the mentioned equiv-
alence holds also when erasing rules are not allowed to use.
Nevertheless, we can show that the membership problem for
the restricted variant is NP-hard even in this case. More pre-
cisely, we show that the membership problem for restricted
fRCGs without erasing rules is NP-hard by giving an effi-
cient reduction of the 3-partition problem to this member-
ship problem.

2. PRELIMINARIES
We assume that the reader is familiar with the basic concepts
of the theory of formal languages. For a comprehensive guide
we refer to [8].

N denotes the set of natural numbers and, for a number
i ≥ 1, [i] denotes the set {1, 2, . . . , i}. For a word w ∈ Σ∗,
where Σ is an alphabet, |w| denotes the number of symbols in
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w. Let a ∈ Σ. Then |w|a denotes the number of occurrences
of a in w.

The 3-partition problem is defined as follows. Given a
multiset H = {n1, . . . , n3m} of positive integers, for some
m ≥ 1. Decide if there is a partition of H into m triplets
H1, . . . , Hm such that the sum of the numbers in each Hi

(i ∈ [m]) is equal.

A random context grammar (RCG for short) is a 4-tuple
G = (V,Σ, R, S), where V and Σ are disjoint alphabets of
the nonterminal and terminal symbols, respectively, S ∈ V
is the start symbol, and R is a finite set of production rules.
The rules in R are of the form (A → α, P,Q), where A ∈
V, α ∈ (V ∪ Σ∗) (that is, A → α is a usual context-free
rule) and P,Q ⊆ V . P and Q are called the permitting and
forbidding sets of the corresponding rule, respectively. For
a rule r : (A → α, P,Q), A and α are called the left- and
right-hand side of r, respectively. Moreover, if α = ε, then
r is an erasing rule. If, for every rule in R, the permit-
ting (resp. forbidding) set is empty, then G is a forbidding
RCG, or fRCG for short (resp. permitting RCG, a pRCG for
short). For the sake of readability, in pRCGs (resp. in fR-
CGs) we will drop the (empty) forbidding (resp. permitting)
sets from the rules.

The derivation relation of G is defined as follows. For every
word u1, u2, α ∈ (V ∪ Σ)∗ and A ∈ V , u1Au2 ⇒G u1αu2 if
and only if there is a rule (A→ α, P,Q) ∈ R such that

1) for every nonterminal B ∈ P , |u1Au2|B ≥ 1, and

2) for every B ∈ Q, |u1Au2|B = 0.

We will drop G from⇒G if G is clear from the context. The
reflexive, transitive closure of ⇒ is denoted by ⇒∗ and the
language generated by G is L(G) := {u ∈ Σ∗ | S ⇒∗ u }. A
word α ∈ (Σ∪V )∗ is called a sentential form if S ⇒∗ α. Any
derivation of the form S ⇒∗ u, where u ∈ L(G) is called a
successful derivation. G is called ε-free, if the rule set of G
contains no erasing rules.

Next we recall a restriction on RCGs introduced in [6]. A
random context grammarG = (V,Σ, R, S) is called restricted
(G is an rRCG for short) if

1) for every rule (A→ α, P,Q) in R, |P |+ |Q| = 1 and,

2) for any two rules r1 : (A → α1, P1, Q1) and r2 : (A →
α2, P2, Q2) in R, we have P1 = P2 and Q1 = Q2.

Throughout the paper we will often combine the above intro-
duced abbreviations concerning random context grammars.
For example, rfRCG abbreviates that “restricted forbidding
random context grammar”.

3. THE MAIN RESULTS
Here we show that the membership problem for ε-free per-
mitting RCGs as well as for ε-free restricted forbidding RCGs
is NP-hard. We do this by giving efficient reductions of the
3-partition problem. This problem is a well known strongly

NP-complete problem, which means that it is NP-complete
even if the numbers of the input instances are encoded in
unary. The usefulness of this is that in this case we can
implement the sum of two numbers simply with the con-
catenation of the words representing these numbers.

Theorem 1. The membership problem for ε-free pRCGs
is NP-hard.

Proof. Consider an instance I of 3-partition, where
H = {n1, . . . , n3m}. We construct a permitting random
context grammar GI as follows. Let GI = (V,Σ, R, S0),
where

• V = {A1, . . . , A3m, S0, S1, . . . , S3m}

• Σ = {a, •,�}

• R = R1 ∪R2 ∪R3 ∪R4, where

– R1 = {(Si−1 → AjSi, ∅) | i, j ∈ [3m], i 6≡ 0 (mod 3)},
– R2 = {(Si−1 → Aj • Si, ∅) | i, j ∈ [3m], i ≡

0 (mod 3)},
– R3 = {(S3m → �, {A1, . . . , A3m})}, and

– R4 = {(Ai → ani , ∅}) | i ∈ [3m]}.

Consider now a successful derivation C of GI . We claim that
C can be divided into the following three parts.

• In the first part, GI applies rules from R1 ∪R2,

• in the next part the only rule in R3 is used,

• in the final part rules from R4 are applied.

Next we prove this claim. Denote r the only rule in R3. It
is clear that GI applies exactly 3m rules from R1 ∪R2 until
S3m appears and no rules from R1∪R2 are applied after that.
Thus there are exactly 3m nonterminals from {A1, . . . , A3m}
in the sentential form when S3m appears. Moreover, to apply
r all the nonterminals in {A1, . . . , A3m} must be present in
the current sentential form. Thus, there is exactly one copy
of each nonterminal form {A1, . . . , A3m} in the sentential
form when r is applied. Therefore no rules from R4 can be
applied before the rule r is applied which finishes the proof
of the claim.

Consequently, at the end of the first part of C the sentential
form has the form

Ai1Ai2Ai3 •Ai4Ai5Ai6 • . . . •Ai3m−2Ai3m−1Ai3m • S3m,

where i1, . . . , i3m is a permutation of [3m]. ThenGI replaces
S3m by � during the second part of C and then replaces the
nonterminals Ai (i ∈ [3m]) with ani during the last part. It
follows that GI generates the following language:

L(GI) = {ani1
+ni2

+ni3 • ani4
+ni5

+ni6 • . . .

. . . • ani3m−2
+ni3m−1

+ni3m •�
| i1, . . . , i3m is a permutation of [3m]}.

36



In this way the words in L(GI) encode exactly those se-
quences of numbers which correspond to the sums of the
numbers occurring in the triplets in the possible partitions
of H. Therefore, I is a positive instance of 3-partition if
and only if L(GI) contains the word

w = ak • ak • . . . • ak •�,

where ak occurs 3m times in w and k =
∑3m

i=1 ni

m
. That is,

we reduced the decision of whether I is a positive instance
or not to the decision of whether w belongs to L(GI) or not.
To finish the proof it is enough to note that the construc-
tion of GI and w can be carried out by a polynomial-time
deterministic Turing machine.

In [1] it was shown that for every ε-free pRCG an equivalent
ε-free restricted pRCG can be constructed. Looking at that
construction one can see that it is in fact a polynomial-
time construction. Using this, Theorem 1, and the fact that
polynomial-time reductions are closed under composition,
we get that 3-partition can be reduced efficiently to the
membership problem for ε-free restricted permitting RCGs.
This yields the following result.

Corollary 1. The membership problem for ε-free rpRCGs
is NP-hard.

Next we show a similar result concerning restricted forbid-
ding RCGs.

Theorem 2. The membership problem for ε-free rfRCGs
is NP-hard.

Proof. Consider an instance I of 3-partition, where
H = {n1, . . . , n3m}. We construct an rfRCG GI as follows.
The basic concept is similar to the one used in the proof of
Theorem 1. However, here we can use in the rules only one
forbidding nonterminal instead of a set of permitting non-
terminals. Therefore we will also use the concept of comple-
mentary pairs of nonterminals introduced in [5]. Roughly,
these are such pairs of nonterminals which cannot occur to-
gether in a sentential form since otherwise the derivation
cannot be successful. According to this, some rules of GI
will introduce not only those nonterminals that were already
used in the proof of Theorem 1 but also the complementary
pairs of certain nonterminals. We will distinguish these com-
plementary pairs from the original nonterminals using the ¯
sign.

Let GI = (V,Σ, R, S0), where

• V = {A1, . . . , A3m, Ā1, . . . , Ā3m,
S0, . . . , S3m, S̄0, . . . , S̄3m}

• Σ = {a, •,�}

• R = R1 ∪R2 ∪ . . . ∪R5, where

– R1 = {(Si−1 → AjSi, {S̄i−1}) | i, j ∈ [3m], i 6≡
0 (mod 3)},

– R2 = {(Si−1 → Aj • Si, {S̄i−1}) | i, j ∈ [3m], i ≡
0 (mod 3)},

– R3 = {(S3m → �, {S̄3m})},
– R4 = {(Ai → aniĀiS̄1 . . . S̄3m, {Āi}}) | i ∈ [3m]},
– R5 = {(S̄i → a, {Si}) | i ∈ [3m]} ∪

(Āi → a, {Ai}) | i ∈ [3m]}.

Let us consider a successful derivation C of GI . We claim
that C can be divided into the following two parts:

• in the first part, only rules from R1∪R2∪R3 are used,
while

• in the second part, only rules from R4 ∪R5 are used.

We prove this claim as follows. The rules in R4 cannot be
used until an Sj (j ∈ [3m]) is in the sentential form. Indeed,
if a rule (Ai → aniĀiS̄1 . . . S̄3m, {Āi}}) was applied while an
Sj was in the sentential form, then Sj and S̄j would occur
at the same time and none of them could be removed any
more (notice that S̄j forbids the application of rules with Sj

on the left-hand side and vice versa). Furthermore, rules in
R5 cannot be used before the rules in R4 since only rules in
R4 introduce nonterminals Āi or S̄i. Consequently, the rules
in R4 ∪R5 cannot be used before the rules in R1 ∪R2 ∪R3

which proves our claim.

One can see that at the end of the first part of C the senten-
tial form has the form

w = Ai1Ai2Ai3 •Ai4Ai5Ai6 • . . . •Ai3m−2Ai3m−1Ai3m •�,

where i1, . . . , i3m ∈ [3m]. Assume now that there is an
i ∈ [3m] such that w contains more than one occurrence
of Ai. In this case, when one Ai is rewritten by the cor-
responding rule in R4 the sentential form contains both Āi

and Ai. However then the derivation cannot be successful as
neither of these two nonterminals can be rewritten by any
rule. Consequently, i1, . . . , i3m must be a permutation of
[3m].

During the second part of C, GI rewrites a nonterminal Ai

(i ∈ [3m]) to ania3m+1 using rules both from R4 and R5.
Thus GI generates the following language:

L(GI) = {ani1 a3m+1ani2 a3m+1ani3 a3m+1 • . . .
• ani3m−2 a3m+1a

ni3m−1 a3m+1ani3m a3m+1 •� |
i1, . . . , i3m is a permutation of [3m]}.

Clearly, L(GI) can be written in the following form, where
we underlined certain parts of the words:

L(GI) = {ani1
+ni2

+ni3 a3(3m+1) • . . .

• ani3m−2
+ni3m−1

+ni3m a3(3m+1) |
i1, . . . , i3m is a permutation of [3m]}.

If we remove the underlined subwords from the words above,
then we get the same language that was already considered
in the proof of Theorem 1. Thus we can conclude that the
words in L(GI) encode all the possible 3-partitions of H.
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Now consider the word

w = ak+3(3m+1) • . . . • ak+3(3m+1) •�

containing the sub-word ak+3(3m+1)• 3m times, where k =∑3m
i=1 ni

m
. One can see that I is a positive instance of 3-

partition if and only if w ∈ L(GI). Since GI and w can
be constructed by a polynomial-time Turing machine, we
could give an efficient reduction of the 3-partition problem
to the membership problem for ε-free rfRCGs. Thus this
latter problem is NP-hard which we wanted to prove.

4. CONCLUSIONS
We have shown that the membership problem for ε-free per-
mitting random context grammars and for ε-free restricted
forbidding random context grammars is NP-hard. On the
other hand, as far as we know, it remains an open question
whether the complexity of this problem for these classes of
RCGs is in NP or not.

To give an NP upper bound on the complexity of this prob-
lem seems to be not trivial as it is discussed below. Con-
sider an ε-free RCG G = (V,Σ, R, S). Since G is ε-free,
the lengths of the sentential forms in a derivation of G are
monotonically increasing. Consider a derivation der of G
and those steps in der, where the length of the sentential
form grows. Let us call these steps growing steps. Assume
that der is a derivation of a word w ∈ Σ∗ with length n.
Clearly der can contain at most n growing steps. Let us call
those parts of der which are between two consecutive grow-
ing steps nonincreasing parts. Notice that in a nonincreas-
ing part, G can apply only rules of the form (A→ u, P,Q),
where u ∈ V ∪ Σ.

Assume now that der is one of the shortest derivations of w.
Clearly, to give a polynomial upper bound on the length of
der it is enough to give such an upper bound on the lengths
of its nonincreasing parts. If G is a context-free grammar
(that is, every rule of G has empty permitting and forbid-
ding sets), then giving such an upper bound is not difficult.
Indeed, in this case we can rearrange the order of the rules
applied in a nonincreasing part of der such that those rules
which are applied on the same position of the sentential form
are applied right after each other. Let us rearrange the rules
in this way in all the nonincreasing parts of der and denote
the yielded derivation by der′. Clearly, der′ is a valid deriva-
tion of w. Let us consider a nonincreasing part der′′ of der′

such that all the rules in der′′ are applied on the same po-
sition of the sentential form. Clearly the length of der′′ is
upper-bounded by |V | since otherwise there would be two
different rewriting steps in der′′ where the same nonterminal
is rewritten and thus der′′ could be shortened contradicting
the fact that der′ is one of the shortest derivations of w.
Using this we can easily conclude that the length of der′ is
polynomially bounded by n · |V |.

However, if G is an RCG, then the order of the rules in der
cannot be freely rearranged since the application of the rules
depends also on context conditions. Therefore it is not clear
how can one shorten a nonincreasing part der′ of der even if
der′ is longer than n · |V |. Thus, giving a polynomial upper
bound on the length of the derivations of G is not possible
using the method described above even if we consider only

pRCGs or rfRCGs. A further investigation of this question
is a topic for our future work.
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ABSTRACT
In this paper we present a null model based clustering method
for asset graphs constructed of correlation matrices of finan-
cial asset time series. Firstly, we utilize a standard config-
uration model of the correlation matrix that provides the
null model for comparison with the original one. Based on
this comparison we define a distance matrix – called asset
graph – on which we perform hierarchical clustering proce-
dures. We apply this method to find clusters of similar as-
sets in correlation based graphs obtained form various stock
market data sets. We evaluate the performance of the pro-
cedure through the Markowitz portfolio selection problem
by providing a simple asset allocation strategy based on the
obtained cluster structure.

Categories and Subject Descriptors
I.6 [Simulation and Modeling]: Applications
; G.1.6 [Optimization]: Nonlinear programming

Keywords
Correlation matrix, Complex networks, Clustering, Portfolio
selection

1. INTRODUCTION
Correlation matrices are of central importance in financial
economics, especially in portfolio theory. Correlations among
various assets’ returns is used to determine the relative amo-
unt of capital should be invested in different assets in order
to minimize the investor’s risk [4]. Graphs can be easily con-
structed from correlation matrices in different ways. In asset
graphs a node represents a company and a weighted edge
between two nodes indicates, for instance, the equal-time
Pearson correlation coefficient between their corresponding
stock prices [3, 9, 11]. Considering correlation matrices as
graphs, a wide range of tools in network analysis, like cen-
trality measures, frequent sub-graph search or community
detection, becomes available [1]. Nevertheless, the direct

conversion to graphs is not evident, since the problem of in-
formation content of correlation matrices plays a key role in
applications, especially in risk management. The estimation
of the correlation matrix is associated with a significant level
of a statistical uncertainty (sometimes called noise) due to
the finite length of the asset return time series [15]. Re-
cently, several approaches, that appeared especially in the
‘Econophysics’ and ‘Complex Networks Analysis’ literature,
have been developed to handle this issue, e.g. [2, 6, 13, 14].
The idea is to filter the ‘information core’ of the correlation
matrix that is robust against statistical uncertainty. One
approach is based on random matrix theory and the idea
is to compare the empirical correlation matrix with a null
model matrix. The null model matrix is defined as the cor-
relation matrix of the same number of random time series
of the same length as the empirical one. A barely different
approach, preferably used in the finance literature, is the
principal component analysis [5]. Other filtering methods
perform hierarchical clustering procedures such as single-
linkage clustering [9] or average-linage clustering [13].

In this work we follow a standard null model approach for
correlation matrices, but consider the information filtering
problem as a graph based data mining task. We should
emphasize, that in [8] the authors showed that treating the
original correlation matrix as a weighted graph directly and
apply modularity maximization for clustering using a stan-
dard null model approach may lead to biased results. This is
due to the fact that the configuration null model doesn’t nec-
essarily give enough importance to node pairs with stronger
correlations, however this is often desired in clustering al-
gorithms. They also provided several versions of the modu-
larity function for correlation matrices. We choose a much
simpler way: we filter the original correlation matrix using a
null model matrix and transform the filtered matrix to a dis-
tance matrix in a proper way. Then a hierarchical clustering
procedure on the distance matrix is performed, regarded as
a heuristic to maximize a modularity-like function.

The paper is organized as follows. In Section 2 we briefly de-
scribe some ways to construct asset graphs from correlation
matrices, and present a heuristic for community detection
(i.e. clustering) for these graphs. In Section 3 we present
our experiments in various stock market data sets through
the Markowitz portfolio selection problem by providing an
asset allocation strategy based on the obtained cluster struc-
ture. Finally, we summarize in Section 4.
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2. METHODS
Let Xi ≡ {xi(t) : t = 0, 1, . . . , T} be a time series repre-
sents the value of some unit i (i = 1, 2, . . . n) at time t.
Particularly, in financial markets i is an asset and xi(t) is
the logarithmic return of it, i.e. xi(t) = logPi(t)/Pi(t− 1),
where Pi(t) is the price of asset i at time t. The system of n
assets is often investigated via the correlation matrix C that
statistically measures the pairwise dependencies, where Cij

is the Pearson correlation coefficient of assets i and j. It is
calculated as

Cij =
Cov(Xi, Xj)√

Var(Xi) ·Var(Xj)
,

where

Cov(Xi, Xj) = Xi ·Xj −Xi ·Xj

is the covariance of Xi and Xj , Var(Xi) = Cov(Xi, Xi) = σ2
i

is the auto-covariance of Xi and Xi denotes the temporal
average of the observations of Xi, i.e.

Xi =
1

T

T∑
t=0

xi(t),

XiXj =
1

T

T∑
t=0

xi(t)xj(t).

We assume that Xi is standardized as (Xi −Xi)/σi.

2.1 Asset graphs
Since the correlation matrix C is a symmetric n × n ma-
trix, it can be viewed as the adjacency matrix of a weighted
graph. In this graph, nodes represent the assets and edges
represent correlation coefficient of asset pairs. In the lit-
erature, C is often transformed into a distance matrix D
with entries Dij =

√
2(1− Cij). This is motivated by the

hypothesis that ultrametric spaces1 are meaningful in eco-
nomic perspective [10].

A simple filtering technique is to threshold the values of C
(or D), leaving only those edges that are greater than an ar-
bitrarily chosen value. Although the method effectively dis-
cards the weakest correlations, that are likely to caused by
random fluctuations in the time series, using an inappropri-
ate threshold value may hide important structural features
of the asset graph.

A different technique, that does not require to choose a
global threshold value is the minimal spanning tree approach.
It reduces the number of edges of the graph from n·(n−1)/2
to n− 1. The procedure is closely related to agglomerative
hierarchical clustering performed with the single-linkage dis-
tance definition [9]. The approach assumes that the origi-
nal correlations are approximated well by the filtered ones,
and similarly to the threshold based filtering it discards all
the weaker correlations. To discard less information, one
can use the planar maximally filtered graph approach [14].
The method retains both the correlations used to create the
minimal spanning tree and additional information as well,
provided that the result is a planar graph.

1Ultrametric spaces are defined by an ultrametric distance
that satisfy the axioms (i) Dij = 0 ⇔ i = j, (ii) Dij = Dji

and (iii) Dij ≤ max{Dik, Dkj},∀(i, j, k).

An important technique, based on fundamental results of
random matrix theory, decomposes the correlation matrix
C into a ‘structured’ and a ‘random’ part [7]. This is done
by comparing eigenvalues of the empirical correlation matrix
with the correlation matrix of the same number of random
time series of the same length. The latter is known to be
given by the Marchenko-Pastur distribution [12]. We use
a similar technique in this work, but we choose a so-called
configuration model to construct the null model matrix that
will be compared with the original one.

2.2 Configuration model and community de-
tection in graphs

A null model correlation matrix C0 is an n×n matrix, where
C0

ij is the mean value of the correlation between assets i
and j under some null model benchmark. For example, un-
der the assumption that every asset is uncorrelated then C0

would be the n × n identity matrix. Here, we use a con-
figuration model as null model to generate C0

ij by replacing
edges (of the correlation graph) independently at random.
The assumption is that the generated C0 correlation matrix
preserves the strength of each asset i, i.e. Ci =

∑
j Cij is

fixed as much as possible, while randomizing the ‘correlation
structure’.

We consider C′ = |C − C0| as the filtered (i.e. ‘cleaned’)
correlation matrix. Then we define the re-scaled Dc =
−C′ + |min C′|+ |max C′| distance matrix, that may be in-
terpreted as a weighted graph related to the correlation ma-
trix. Here smaller distance between two nodes refers larger
correlation between the corresponding assets. We then apply
hierarchical clustering to Dc. This method can be regarded
as a heuristic to maximize a modularity-type function, used
for clustering, given as

∑
i,j [Cij − C0

ij ]δij , where δij = 1 if
i and j assigned to the same cluster, and δij = 0 otherwise.
Hierarchical clustering results in a dendrogram that can we
cut at an arbitrary level h from the root to get h clusters of
stocks.

3. EXPERIMENTS
Correlation (covariance) matrices often used in portfolio op-
timization (a widely-used model will be described). The per-
formance of the different noise filtering procedures is gener-
ally measured via various performance metrics of composed
portfolios using filtered correlation matrices.

3.1 Data sets
For our experiments we have relied on the daily closure price
time series of three different stock data sets available at Ya-
hoo! Finance. The selection of the stocks was based on
global indices in two cases (FTSE100 and DOW30), and
we also chose the 30 stocks that were active for the longest
period among the available time series data. For the sake
of simplicity, we refer to these data sets as “FTSE” (n = 32
stocks, 1183 records from 16-05-2011 to 27-01-2016), “DOW”
(n = 29 stocks, 2849 records from 19-03-2008 to 12-07-2019)
and“Active30”(n = 30 stocks, 5398 records from 19-01-1995
to 27-06-2016).

3.2 Markowitz portfolio selection
The Markowitz portfolio selection problem is an optimiza-
tion problem where the investor would like to create an opti-
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Figure 1: Risk ratios on the ‘FTSE’ dataset. The
lower, the better.

mal portfolio of assets with minimum risk, given an expected
return in advance. The portfolio is represented as a vector p
that consists of the fraction of wealth to be invested in each
asset. We also assume that

∑
i pi = 1, i.e. 100% of wealth is

invested. For example p = (0.2, 0.8) means investing 20% of
our wealth in stock #1 and 80% in stock #2. To reach the
optimum, the portfolio has to satisfy two conditions. Firstly,
it has to achieve an expected return rp =

∑
i piXi, where

Xi is the mean log-return of stock i, greater than a speci-
fied value R (this is an arbitrary choice). Secondly, it has
to provide minimal risk, measured as σ2

p = pΣpT , where Σ
is the covariance (i.e. not normalized correlation) matrix of
the assets considered. Negative pi weights, also referred to
as short-selling, are allowed.

3.3 Methodology
We used the following rolling window approach to calcu-
late the correlation (and covariance) matrices from the time
series data and perform the optimizations described previ-
ously. In each dataset we calculated the correlation ma-
trix on the time range [t0, t0 + ∆T ], performed a filtering
procedure, in a similar way as in [13], and the optimiza-
tion which gave us a portfolio p. This meant four main
optimizations per each t0 starting day: optimization with-
out filtering (“Classic”), filtering using hierarchical clustering
on (i) asset graph D (“C Single”, “C Average”) and (ii) on
configuration model based asset graph Dc (“Conf Single”,
“Conf Average”). In case of clustering procedures, our port-
folio selection strategy was choosing only one asset from each
cluster at random and performed portfolio optimization con-
sidering only the pre-selected assets. We then evaluated the
performance of the portfolios on the interval [t0 + ∆T, t0 +
2 ·∆T ], where t0 ∈ {0, 30, 60, . . .} and ∆T = 100.

For each portfolio p = (p1, p2, . . . ) we calculated the realized
return as

n∑
i=1

pi
Pi(t0 + 2∆T )− Pi(t0 + ∆T )

Pi(t0 + ∆T )
,

the Pre-Sharpe ratio (rp/σ̂
2
p), and the risk ratio (σ2

p/σ̂
2
p),

that is the fraction of the ‘realized’ and estimated risk. We
calculated the mean of each metric but trimmed the data
by 20% (10% on the lower and 10% on the upper end) to
remove possible outlier values.
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Figure 2: Sharpe ratios on the ‘FTSE’ dataset. The
greater, the better.
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Figure 3: Realized returns on the ‘FTSE’ dataset.
The greater, the better.

3.4 Results
Our experiments show that the resulting portfolios in gen-
eral had significant improvements in all metrics when filter-
ing methods were applied to the correlation (and hence co-
variance) matrix. The configuration model based approach
provided lower realized risk and lower difference between es-
timated and realized risks than the other filtering methods
(Fig. 1). The risk estimation was even better when we only
used one stock per cluster (using 3 or 4 clusters provided
the best risk ratios), but the estimated risk increased (the
increase of the estimated risk brought it closer to the real-
ized one). In these cases we chose a random element of the
cluster, hence it was not guaranteed that we chose the assets
with the lowest risk overall. Regarding Sharpe ratios (Fig.
2), it can be noted that the single-linkage clustering was the
closest one to the original Markowitz-model, although when
using only one stock per cluster, the value significantly de-
creased (due to the fact that the estimated return did not
grow, but the risk increased). The configuration model per-
formed similarly, albeit a bit worse than the other methods.

Regarding realized returns, as Fig. 3 shows, the cluster-
based asset selection improved performance. When looking
at the results of all the clustering-based approaches, the con-
figuration model provided the highest realized returns with
3 clusters (and thus 3 stocks). The worst performer was
the single-linkage clustering. Filtering procedures show a
similar shape over time and outperform the classic method
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in certain intervals (Figs. 4-6). However, understanding the
shape of the curves and the underlying causes are worth
further investigation.

4. SUMMARY
In this work, by combining techniques used to investigate
correlation matrices and used in graph based data mining,
we performed clustering procedures for asset graphs con-
structed of filtered correlation matrices of financial asset
time series. We provided an asset allocation strategy based
on the obtained cluster structure and using Markowitz’ port-
folio optimization. The above discussion of our findings
shows that the utilized methodology is able to provide reli-
able portfolios in terms of risk estimation and is competitive
with classical methods in terms of return realization as well.
Defining asset graphs based on different filtering procedures
and cluster based asset selection strategies leave open many

questions for further investigations.
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ABSTRACT
Storage limitations of intermediate materials add an addi-
tional layer of complexity to the scheduling of batch chem-
ical processes. Not only the storage capacities have to be
taken into account, the properties of the intermediates in
question often pose limitations on the storage time as well.
In this paper, different techniques are discussed, which al-
low proper modeling of such timing limitations within the
S-graph framework. The introduced techniques were imple-
mented and tested on literature examples and case studies,
to identify the most efficient one.

Keywords
scheduling, limited-wait storage policy, S-graph

1. INTRODUCTION
In case of multi-stage production recipes, storing the inter-
mediates is an inherent burden of batch plants, while it is
not an issue for their continuous counterparts. Storage op-
erations cause more complexity during both planning and
operation, however, they can have a huge impact on the
optimal schedule. The storage policy may vary for differ-
ent intermediates, and usually it has two dimensions: the
facility’s capacity for storing the material in question, and
the time limitations on the storage operation. This paper
focuses on the second issue.

Storage time of an intermediate is sometimes limited by
some physical or chemical property, which is important for a
subsequent step, but fades over time, e.g., temperature, ho-
mogeneity. This is referred to as Limited-Wait (LW) case,
and Zero-Wait (ZW) in its extreme, when the intermediate
has to be processed immediately. In the case of absence of
any such limitations, the intermediate is considered to have
Unlimited-Wait (UW) policy.

The way to address LW policy depends on the method used
for scheduling. In this paper we focus on the S-graph frame-
work, and compare the various techniques that can tackle
these kinds of timing limitations. The S-graph is a directed
graph model of the scheduling problem, and the framework
applies branch-and-bound algorithms to find the optimal
schedule.

The paper is structured as follows: in Section 2, a small mo-
tivational example is shown. Section 3 provides the problem
definition, and a short overview of related publications. In
Section 4, the different approaches of tackling LW policy
in the S-graph framework are briefly introduced. Section 5
shows empirical test results of the approaches of Section 4.

2. MOTIVATIONAL EXAMPLE
To illustrate the influence of storage time limitations on the
quality of the optimal schedule, a small motivational exam-
ple is presented. The example entails 3 products, A, B, and
C, which are produced via 3 units: U1, U2, and U3. The
details of the recipe are shown in Figure 1.

Figure 1: Motivational example

For this example, and for the rest of the paper, the objective
function to be considered is the minimization of makespan,
and it is also assumed, that the facility has enough storage
space for any intermediate. The optimal makespan of the
motivational example depends on the time limitations posed
on the 3 intermediate materials. For the sake of simplicity,
all of the materials are assumed to have the same time limit
for this example.

The optimal makespan in the UW case is 13 hours, as shown
in Figure 2. This schedule, however, needs to store the inter-
mediates of product A. The first storage operation requires
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2 hours, and the second 3 hours. If the limit on storage time
is set to 2 hours, the makespan is increased to 14 hours, as
shown in the second part of Figure 2.

Naturally, as the limits get lower, the makespan may in-
crease. In the extreme case, i.e., in the case of ZW policy,
the makespan is 17 hours, as shown in the third part of
Figure 2.

3. PROBLEM DEFINITION AND LITERA-
TURE OVERVIEW

Although the approaches presented in Section 4 may ad-
dress a wider range of scheduling problems, for the sake of
simplicity, the considered problem class has the following
features:

• multipurpose recipe, i.e., recipes for products are se-
quential, but the order of the units are not necessarily
the same

• a task may have several suitable non-identical units
with different processing times

• the facility is equipped with enough capacity to store
all of the intermediates

• cleaning-, transfer-, and changeover times are negligi-
ble

• all of the raw materials are available from the start

• preemption is not allowed

• the goal is to minimize the overall production time,
i.e., the makespan

• for each intermediate, a non-negative upper time limit
is given for its storage time, that may be 0 or infinity

The first papers to investigate zero-wait policies date back
to the 70’s (see e.g., [4, 16]). Zero-wait constraints are also
thoroughly investigated for shop problems with more than
400 papers [1]. Batch process scheduling gained the atten-
tion of both engineers and optimization experts in the 90’s
and numerous methods have been presented since then to
solve these industrial scheduling problems [9, 2]. The variety
of the proposed approaches stretch from Mixed Integer Lin-
ear Programming (MILP) formulations [15] through state
space exploration techniques (Timed Automata, Timed Petri
Nets) to directed graph based approaches [17, 6].

LW constraints have been addressed in many different ways
in the literature. Some MILP models can easily express
them via linear constraints [14, 8], other approaches apply
heuristics to solve such problem classes [5, 18], or rely on a
separate branch-and-bound technique [3].

The S-graph framework was originally introduced to address
problems with UW policy [17]. Since then the framework
has been extended to tackle many different problem classes,
some of which required LW or ZW constraints on interme-
diates [12]. The goal of this paper is to empirically compare
different options, developed previously [10] or new, and find
the most efficient one.

4. APPROACHES FOR LW POLICY WITH
THE S-GRAPH FRAMEWORK

The S-graph framework uses weighted directed arcs to ex-
press timing constraints within the events represented by
the vertices, that are either the starting time of tasks or the
shipping of products. An arc leading from node ni to ni′

with the weight of wi,i′ encodes, that the starting time of
task i′ must be at least wi,i′ later than the starting of task
i.

These type of arcs are used to express both the produc-
tion precedences and the scheduling decisions made by the
algorithms. Unlike all of these, limited-wait constraints en-
force not a lower but upper bound on the starting of a task,
thus, they can not immediately be expressed with the avail-
able tools of the framework. The following two subsections
briefly introduce two possible extensions.

4.1 Combinatorial approach
The LW constraints enforce an upper bound on the starting
time of a subsequent task in the form

STi+1 ≤ STi + pti + LWi

where STi, STi+1 are the starting times of two subsequent
tasks in the production of some products, pti is the pro-
cessing time of task i, and LWi is the maximal time, the
intermediate produced by task i can be stored. This con-
straint can easily be converted to the form

STi ≥ STi+1 + (−pti − LWi)

This way, the constraint can be expressed by a regular S-
graph arc leading from ni+1 to ni, which have the negative
weight of −pti−LWi. The introduction of negative-weighted
arcs, however, require slight modifications on the longest
path method that is used for providing lower bound on the
makespan, and to report infeasible schedules when finding
cycles in the graph.

After introducing the negative ”backward arcs”, cycles now
naturally occur in the graph, and only those with positive
total weight are the sign of infeasibility. Some of the 0
weighted cycles also represent an infeasible schedule, which
phenomenon is called the cross-transfer [11].

The advantage of this approach is to have only a minor over-
head compared to the original algorithm. Moreover, the
longest paths in the graph can be cached in a difference-
bound-matrix[7], which allows quick updates and constant
time lookup in the implementation. On the other hand, the
bounds can be weak farther from the leafs.

4.2 Bounding LP approach
The S-graph model shows a lot of similarity with the general
precedence MILP models found in the literature. Both of
these approaches address the scheduling problems as assign-
ment and sequencing decisions, thus there is a one-to-one
relation between different components of the two sides. It
is not the goal of this paper to detail such precedence based
MILP models, however, to ease further explanations, three
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Figure 2: Optimal schedule of the motivational example for UW, LW and ZW policies

typical timing constraints are shown here.

STi+1 ≥ STi +
∑
j∈Ji

pti,j · Yi,j (1)

This equation expresses that the starting time of task i+ 1,
that is the subsequent task of i, must start at least as much
later, as the processing time of task i in the selected unit
j. STi and STi+1 are continuous variables for the starting
times, and Yi,j is a binary assignment variable. The se-
quencing of tasks assigned to the same unit are expressed
by:

STi ≥ STi′ + pti′,j −M · (3 −Xi′,i − Yi′,j − Yi,j) (2)

where Xi′,i is the binary sequencing variable, that takes the
value of 1 if i′ precedes i in any unit. In such a model, the
LW constraints can be easily expressed in the form:

STi+1 ≤ STi +
∑
j∈Ji

pti,j · Yi,j + LWi (3)

This MILP model can be integrated into the S-graph solu-
tion algorithm the following way:

• At the root of the branch-and-bound tree, the prece-
dence based model of the problem is generated, and
the sequencing, assignment variables are relaxed to be
continuous variables from the interval [0, 1].

• When scheduling decisions are made by the S-graph
algorithm to create child subproblems, the LP problem

is copied, and the relaxed binary variables related to
those decisions get fixed in the LP model of the child.

• Instead of calling the longest path algorithm to provide
bound, the relaxed LP model is solved.

The advantage of this approach is better bounds close to
the top of the tree, where the assignment decisions are not
yet made. However, the bounding step requires much more
computation, not to mention the overhead for allocating,
copying, destroying the LP models in the memory. To in-
crease the efficiency of this approach, instead of copying the
LP model for each node, only one instance could be stored
(per thread), and the bounding step only modifies the inter-
vals of the decided binary variables. Moreover, a child may
use the solution of the parent node with the dual-simplex
algorithm.

5. EMPIRICAL RESULTS
All of the approaches mentioned in Section 4 have been im-
plemented, and thoroughly tested. Here, we show the results
for a literature example [13], which reflect our overall expe-
rience. 13 test cases were considered, and each approach
ran with a 1 hour time limit. The computational results are
shown in Table 1.

Although the results vary, it is obvious that the combina-
torial approach with the negatively weighted arcs far out-
perform the LP bound based approaches. The latter two
sometimes exceeded the time limit as indicated in the ta-
ble. Surprisingly, the basic LP bound approach with copying
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Table 1: Test results

CPU times (s)
Test Makespan Negative LP bound LP bound
case (h) arcs basic advanced

1 118 1223.88 - -
2 84 2.32 224.21 188.87
3 33 8.76 472.53 415.92
4 133 0.22 10.78 13.32
5 148 1.31 97.61 86.34
6 72 0.19 2.67 49.73
7 97 9.20 743.96 694.80
8 89 27.64 3009.87 2454.94
9 33 1520.99 - -
10 153 131.23 630.68 -
11 154 497.82 942.72 634.81
12 76 2.27 160.23 441.31
13 162 75.28 - -

the LP model, and not using the parents solution actually
proved to be faster than the more sophisticated one.

6. CONCLUSIONS
Three different methods were presented for addressing LW
constraints in the S-graph framework: a combinatorial tech-
nique with negatively weighted arcs, and an updated longest
path algorithm, and two approaches using the relaxed LP
model of a precedence based MILP formulation as bound-
ing function. The empirical tests clearly showed, that the
combinatorial approach outperforms the LP bound based
techniques in all of the test cases. Thus, future extensions
of the S-graph framework should rely on this technique to
tackle LW or ZW constraints.
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[11] M. Hegyháti, T. Majozi, T. Holczinger, and
F. Friedler. Practical infeasibility of cross-transfer in
batch plants with complex recipes: S-graph vs MILP
methods. Chemical Engineering Science,
64(3):605–610, 2009.
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ABSTRACT
In this paper, a method is presented for rendering a 3D dig-
ital Earth. The method works in three steps. Firstly, the
world map is partitioned into square tiles and multiple lev-
els of detail. Then, the transformation from 3D to 2D is
reversed, vertices are calculated, and connected into trian-
gles. In the final step, the vertices are offset to model the
Earth’s terrain. The RAM usage and FPS of the proposed
method were measured in regard to the number of GIS map
layers. Experimental results have shown that the proposed
method is suitable for real-time visualization of the Earth,
even when multiple map layers are used.

Categories and Subject Descriptors
I.3.5 [Computer Graphics]: Computational Geometry and
Object Modelling;
I.3.7 [Computer Graphics]: Three-Dimensional Graphics
and Realism

General Terms
Computer Graphics

Keywords
3D Computer Graphics, Visualization, Digital Earth

1. INTRODUCTION
A 3D computer model of the Earth has a lot of practical
applications. The motivation behind it and the technology
needed for its realization were discussed by the US Senator
Al Gore as early as 1998 [1]. In his speech, he also presented
some practical use cases for such an application. The model
could be used for political purposes, crime-fighting purposes,
biodiversity preservation, climate change prediction, and ed-
ucational purposes. At the time, however, the technology to
realise such an application was very limited. The sub-meter
precision that Gore envisioned requires a Central Process-
ing Unit (CPU) that is capable of processing a lot of data to
generate the triangles for visualization. A powerful Graph-
ics Processing Unit (GPU) is also needed to store these tri-
angles and visualize them in real time, while storing maps

for texturing the triangles requires huge amounts of storage
space (for example, if a 1m × 1m area was represented by a
single pixel, 120 MB of data would be needed just to cover
the equatorial line).
In 2011, Goodchild published an overview of the existing
technologies related to Gore’s 1998 speech [2]. He compared
the functionalities of geobrowsers (for example, Google Earth)
and GIS (Geographic information systems), and provided
the reasons why the former were used more widely. He
viewed powerful visualization as the main advantage of the
geobrowsers over GIS, as GIS contained mainly information
without aerial images of the Earth. The second, and also
very important advantage of geobrowsers, is the ease of use,
the ”child-of-ten standard”, which means that a child of ten
years can learn to use a geobrowser within ten minutes with-
out any previous knowledge. The GIS, on the other hand,
required advanced geographical knowledge to really under-
stand the presented data.
For detailed real-time Earth visualization a lot of data have
to be processed, which is a problem, even for modern hard-
ware. The resolution of distant data can be lowered to de-
crease the number of rendered vertices. Since faraway ob-
jects are displayed smaller on the screen, they appear the
same to users, even if most of the details are not displayed.
This concept is called the Level Of Detail (LOD). Many
different approaches have been used to implement LOD for
real-time rendering. Pajarola [3] proposed adaptive triangu-
lation based on a restricted quadtree. In [4] the domain is
tiled, and a discrete set of LODs is generated for each tile.
However, the whole terrain should be preprocessed to avoid
mesh re-triangulation at run-time. The approach with tiling
is also used in [5], where adaptive rendering is used (i.e. on
slower hardware less triangles are being drawn). This results
in less detailed terrain, but the frame rate is not affected by
the capability of the device. Another adaptive rendering
method was proposed by Cai, Li and Su [6], where the ter-
rain is divided into several blocks, which are preprocessed for
faster visualization. An interesting approach to tiled visual-
ization is also described in [7], where fractal noise displace-
ment is used to synthesise a more detailed view than that
stored. Larsen and Christensen proposed a method [8] for ef-
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ficient visualization of polygonal surface data. It is based on
compact regular grid representation, and requires minimal
preprocessing. However, none of the previously mentioned
approaches visualise the terrain planet wide. Cignoni et al.
addressed planet wide visualization in the P-BDAM algo-
rithm (together with similar algorithms described in [9, 10,
11]).
In this paper, a method is presented for rendering a 3D
model of the Earth by using a Digital Terrain Model (DTM)
data. The main contribution of the method is the approach
to rendering the 3D digital Earth using GIS layers. The
method consists of three steps. In the first step, the world
map is partitioned into square tiles, which are obtained from
the GIS web services. The vertices are generated and con-
nected into triangles according to the tiles in the second
step. In the final step, the vertices are offset to model the
terrain. The results of the method are considered in terms
of RAM (Random-Sccess Memory) usage and FPS (Frames
Per Second). According to the results, the proposed method
is suitable for real-time visualization of a 3D digital Earth.
This paper is structured as follows. The proposed method
for visualization is presented in the next Section. The re-
sults of the proposed method are given in Section 3. The
paper is summarised in Section 4.

2. PROPOSED METHOD
The description of the proposed method is divided into two
parts. The tiling system of the world map in 3D is presented
in the first part. The second part discusses the modelling of
the 3D terrain.

2.1 Tile System
A transformation is needed to map rectangular surfaces of
textures to the surface of the Earth, because its shape is
close to a spheroid. The most commonly used is Mercator
projection, which projects the surface of the Earth onto a
cylinder with base radius of the same length as the equatorial
radius of the Earth. This, of course, introduces distortions
to the map, which stretch the objects that are close to the
poles.
In this paper, a square map is used, partitioned into 20 layers
of increasing quality. The first layer contains one texture or
tile. That tile is then partitioned in a quad-tree-like fashion.
That way, the second layer contains 4 tiles, the third layer
contains 16 tiles, etc. Textures for the tiles are obtained
from the web using the GIS Web Map Service (WMS). The
textures are partitioned and prepared for tiling by the server.
The vertices can then be generated to be spaced equally
across a tile or the 3D world. In both cases, a transformation
is applied to either map vertices to tiles, or to map tiles to
vertices. The transformation is done only in the direction of
the Y-axis, since the Mercator projection retains the length
ratios across the same line of latitude. The transformation
that maps tiles to vertices is given in Eq. 1, where v is the
Y-coordinate on the texture, Y is the Y-coordinate of the
vertex and M = 2 atan (sinhπ).

v = 0.5−
asinh

(
tan

(
M
π

asinY
))

π
(1)

When mapping vertices to tiles, Eq. 2 is used to calcu-
late the Y-coordinate of the vertex, V.Y , where Y is the
Y-coordinate on the world map in the range [-0.5, 0.5]. The
X and Z-coordinates of the vertex can then be calculated

from its Y-coordinate and X-coordinate on the world map
using trigonometric functions.

V.Y = sin
( π
M

atan (sinh(2πY ))
)

(2)

All data necessary for visualization can be calculated af-
ter estimating all vertices. However, as the number of tiles
grows exponentially with each level of detail, it is sensible
to render just a few of them. Calculation of which tiles are
needed for rendering can be done by the following procedure.
Firstly, the position of the camera is normalised to the sur-
face of the Earth. Then, the viewing direction is projected
onto a plane perpendicular to the Earth at the previously
normalised point according to Eq. 3, where ~r is the pro-
jected viewing direction, ~p is the vector from centre of the

sphere to the position of the normalised point, and ~d is the
viewing direction vector. The projected vector is then split

into its vertical (~v) and horizontal (~h) components using Eq.
4 and 5, respectively, where ~u = (0, 1, 0).

~r = ~p×
(
~d× ~p

)
(3)

~v = ~r.y (4)

~h = sgn (~r · (−~p× ~u)) (−~p× ~u) (5)

Finally, the index is calculated of the farthest visible tile.
The farthest visible point on the sphere can be obtained by
rotating the directional vector of the camera around an axis
perpendicular to the vectors of the camera’s direction and
the vector between the position of the camera and centre of
the sphere, then calculating the tangent point on the sphere.

The angle of rotation is calculated from Eq. 6, where ~l is
the vector of the viewing direction, ~c is the vector from the
centre of the sphere to the camera, and r is the radius of the
sphere. The tangent point ~t can then be calculated using

Eq. 7, where ~p is the position of the camera, ~d is the direc-
tion of the camera, and r is the radius of the sphere. The
Equation assumes that the centre of the sphere is located
at the point (0, 0, 0). If the sphere is displaced, its centre
should be subtracted from ~p and then added to ~t.

φ = acos−
~l · ~c
‖~l‖‖~c‖

− asin
r

‖~c‖ (6)

~t = ~p+ ~d

(
~d · ~p−

√(
~d · ~p

)2
+ r2 − ~p · ~p

)
(7)

Assuming the sphere is positioned in the centre of the co-
ordinate system with north pole oriented towards positive
Y axis and Prime Meridian towards positive Z axis, the in-
dices of the tile covering any position of the sphere can be
calculated using Eq. 8 and 9, where l is the level of detail,
~p is the position we are calculating the tile indices for, and
M is the same constant as used in the Eq. 1.

tx =

⌊
2l−1

(
1 +

1

π
atan

~p.x

~p.z

)⌋
(8)

ty = 2l − 1−
⌊

2l−1

(
1 +

1

π
asinh

(
tan

(
M

π
asin

~p.y

‖~p‖

)))⌋
(9)
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2.2 3D Terrain
Two types of textures are used to render a 3D surface:

• Colour textures, which affect the colour of pixels, and

• Elevation textures, which are needed to displace ver-
tices and, thus, form the 3D terrain.

Both texture types are retrieved from the GIS server (e.g.
GeoServer) through WMS and the Web Coverage Service
(WCS) respectively. WMS and WCS are specifications cre-
ated by the Open Geospatial Consortium for requesting geo-
referenced data. While WMS is the most widely used Stan-
dard for retrieving map products from the GIS server, WCS
can provide more information (e.g. terrain heights). Which
textures are needed for a particular camera position is de-
termined by the Tile System (see subsection 2.1). Colour
textures are used in the fragment shader of the graphics
pipeline (Fig. 1) to display a map, satellite image, or any
geographically related data on the surface of the Earth. El-
evation textures contain only one channel - elevation (E) of
some point on the Earth).

In the vertex buffer of the graphics pipeline, the distance

Vertex shader

Tessellation control 

shader

Tessellation

evaluation shader

Fragment shader

Output

Tessellation level is set.

Vertices are displaced 

to form 3D terrain.

Color of each fragment 

is specified.

Terrain visualisation.

Figure 1: The outline of the graphic pipeline. On
the left side, the stages of used pipeline are shown
while on the right the proposed implementation is
shown.

between each vertex and the centre of the digital Earth is 1.
Thus, without elevation textures, the Earth is represented
as a perfect sphere. On the GPU, vertices are displaced
based on Eq. 10 to get new position ~v′. The original vertex
position is denoted by ~v, and the radius of the sphere (3D
Earth) is denoted by R.

~v′ = ~v

(
1 +

E

R

)
(10)

Displacement of vertices is realised in the tessellation stage
of the graphics pipeline. Consequently, elevation textures
can be received independently of colour textures, since no

local preprocessing is needed for displacing vertices. Thus,
the source of elevation textures can be added or removed
during the programme execution. When the elevation tex-
ture is retrieved, the terrain will be elevated immediately. If
the source of the elevation textures does not cover the entire
Earth, only the provided area will be elevated. Furthermore,
the tessellation level can be changed during visualization to
change the resolution of visualized data dynamically with-
out the need of vertex buffer recalculation on the CPU (see
Fig. 2).

Since geometry is created on the GPU global memory, it

a)

b)

Figure 2: Display of resulting terrain with two dif-
ferent resolutions. In a) the middle resolution of ter-
rain is shown (tessellation level 4), while b) shows
rendered terrain in high resolution (tessellation level
8). For clarity’s sake, the triangles boundaries are
displayed in red.

does not exist on the host memory. Nevertheless, the posi-
tion and height of a point on the surface can be retrieved
from the GPU for each pixel on the screen. After obtaining
the depth component of the corresponding pixel, unproject-
ing can be done to obtain fragment coordinates in the world
space (~p′). After that, Eq. 11 is used to get elevation in
metres:

E = (‖~p′‖ − 1)R (11)

Eq. 12 and Eq. 13 are used to retrieve longitude (lon), lati-
tude (lat).

lon =
180

π
atan

~p′.x

~p′.z
(12)
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lat =
360

π2
asin

(
~p′.y

‖~p′‖

)
atan (sinhπ) (13)

3. RESULTS
The results of the proposed method are presented in this sec-
tion. The RAM (Random Access Memory) usage was mea-
sured and FPS (Frames Per Second) was calculated when
rendering the Earth with different numbers of GIS map lay-
ers. For calculating the FPS, the average time needed to
process and draw each frame on the screen was measured,
and then inverted to obtain the FPS. Measurements were
done on a computer with the following configuration: Intel
Core i5-3570K 3.40 GHz CPU, GeForce GTX 1060 6GB, 32
GB of RAM, and Windows 10 Education operating system.
The graph of average results is shown in Fig. 3. As seen,
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Figure 3: RAM usage and FPS when rendering dif-
ferent number of GIS map layers with the proposed
method

the RAM usage increases linearly with the number of GIS
map layers, with each layer increasing the usage by approx-
imately 9 MB. On the other hand, FPS tends to decrease
when more than three layers are rendered. This happens be-
cause FPS is inversely proportional to rendering time. The
rendering time increases by approximately half a millisecond
each time a layer is added, which results in lower and lower
FPS drops when more layers are added.
The results have shown that the proposed method is suitable
for real-time rendering of a 3D Earth on modern personal
computers. Therefore, the proposed method could be used
as a standalone application (i.e. a geobrowser), or as a vi-
sualization option for larger applications.

4. CONCLUSION
In this paper, a new method is proposed for tile-based,
planet wide terrain visualization. At first, the position and
visual quality of needed tiles are calculated, based on cam-
era position. Then, two types of tiles are retrieved from the
GIS server in the form of textures. Colour textures define
the colour of each pixel in the viewing frustum. Elevation
textures affect the elevation of each vertex. Since terrain is
formed on the GPU, the proposed method needs almost no
preprocessing.
The performed experiments proved that adding additional
layers does not decrease performance significantly, and that
modern GPUs can visualise several layers real-time. There-
fore, the proposed method could be used in multiple applica-

tions, such as visualization of maps with multiple layers (e.g.
visualization of land usage, annual weather analysis, etc.).
For future work, the method could be improved to support
separate elevation sources for each colour source. With this
feature, several completely different terrains could be visu-
alised at the same time.
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ABSTRACT
Measuring nodes’ importance in a network and ranking them
accordingly is a relevant task regarding many applications.
Generally, this measurement is done by a real-valued func-
tion that evaluates the nodes, called node centrality mea-
sure. Nodes with the largest values by a centrality mea-
sure usually give the highest contribution in explaining some
structural and functional behavior of the network. The sta-
bility of centrality measures against perturbations in the net-
work is of high practical importance, especially in the anal-
ysis of real network data that often contains some amount
of noise. In this paper, by utilizing a simulator we imple-
mented in R, a formal definition of stability introduced in
[13] and various perturbation methods are used to experi-
mentally analyze the stability of some commonly used node
centrality measures.

Keywords
Network science, Centrality measures, Stability, R language

1. INTRODUCTION
In a complex network, being social (e.g. Facebook friend-
ship), economical (e.g. international trade), biological (e.g.
protein-protein interaction) or technological (e.g. transporta-
tion) network, the position of the nodes in the topology of
the underlying graph is of central importance. Central nodes
in this graph topology often have major impact, whereas pe-
ripheral nodes usually have limited effect on the structure
and functioning of the network. Thus, identifying the central
and most important nodes helps in better understanding the
networks from many different perspectives. Node centrality

∗The author was partially supported by the National Re-
search, Development and Innovation Office - NKFIH, SNN-
117879

measures are metrics designed to identify these important
nodes. However, the importance of a node can be interpreted
in many different ways, therefore, depending on the appli-
cations, many centrality measures have been developed and
effectively applied in various domains [7]. The most com-
monly used centrality measures are degree [11, 14], close-
ness [1, 12], eigenvector [2], betweenness [8], PageRank [4]
and HITS [10]. Degree centrality measures the importance
of a node simply by the number of its neighbors. Close-
ness centrality shows the average shortest path length from
the node to every other node in the network. Eigenvector
centrality, and similarly PageRank, of a node is computed
(iteratively) as a function of the importance of its neigh-
bors. Betweenness centrality measures the relative number
of shortest paths in the network that go through a node.

The stability of centrality measures has often been investi-
gated in an empirical way by comparing the network with
one obtained by modifying the original one according to
some randomisation procedure [3, 6, 15]. Recently Segarra
and Ribeiro gave a formal definition for the stability of cen-
trality measures and proved that degree, closeness and eigen-
vector centrality are stable whereas betweenness centrality
is not [13]. In this work we experimentally investigate the
stability of degree and eigenvector centrality measures on
various data sets, and under two different perturbation pro-
cesses. By doing so we introduce our simulation environ-
ment which is implemented in R and available online as an
interactive tool.

This paper is organized as follows. In Section 2 we will
briefly discuss the definition of stability for centrality mea-
sures and introduce the main notations used in the paper.
In Section 3 we will present a simulation environment writ-
ten in R and describe the data sets used in our experiments.
In Section 4 we will describe the two perturbation processes,
discuss our results and draw some succinct conclusions.

2. NODE CENTRALITY AND STABILITY
Let us consider a network represented by a graph G =
(V,E), where V is the set of nodes and E is the set of edges
(i.e. pairs of nodes) of the network. Centrality measure is
a real-valued function CG : VG → R≥0, that assigns a non-
negative number to each node of network G. Here we will
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not give the formal definitions of the investigated centrality
measures that can be found e.g. in [7]. We use the definition
of stability introduced in [13] as follows. A node centrality
measure C is said to be stable if

|CG(x)− CH(x)| ≤ KG · d(G,H) (1)

holds for every node x ∈ V , where G and H are two graphs
over the same node set V , KG is a constant, and d(·, ·) is a
distance function between two graphs.

The definition says that a centrality measure is stable if
the maximum change in node centrality is bounded by a
constant times the distance of the two graphs. This con-
stant value must be universal to any perturbed version of
the initial graph. Furthermore, the constant value does not
depend on the presence of normalization of centrality val-
ues. Note that the definition is similar to the definition of
Lipschitz-continuity, applied in a discrete space. In order
to make the above inequality meaningful a graph distance
d : G×H → R≥0 should be specified. Here, the distance of
two graphs with identical node set V is defined as

d(G,H) =
∑
i,j

|AG
ij −AH

ij |,

where A denotes the (weighted) adjacency matrix of the
network.

It is of empirical interest to study how graphH occurs from a
given graph G and how it affects the constant KG in formula
(1). In Section 3 different graph perturbation methods using
various input graphs and data sets in order to examine the
ranges of KG are discussed.

2.1 Theoretical values in stability concepts
Segarra and Ribeiro showed that using the stability concept
(1) the degree, closeness and eigenvector centrality measures
are stable, whereas betweenness centrality is not [13]. The
theoretical KG values for the three stable measures were de-
termined. Given a directed and weighted graph G, KG = 1
for degree centrality. This is because the distance of the two
adjacency matrices will be at least the maximum difference
of the degree centrality value. Furthermore this theoretical
value for undirected weighted graphs can be reduced to 1/2
due to the symmetry of the adjacency matrices. For close-
ness centrality it was proved that the theoretical bound KG

is equal to the number of nodes, hence it is not a universal
constant. The eigenvector centrality is stable and the con-
stant KG can be computed as 4/(λ1 − λ2), where λ1 and
λ2 are the greatest and second greatest eigenvalue of the
adjacency matrix of graph G, respectively.

Although there exist some theoretical results for the con-
stant KG, it could still be interesting to analyze its actual
value in real networks under natural perturbation scenarios.
In the next section we describe our simulation environment
and data sets used for experimental analysis.

3. SIMULATION ENVIRONMENT
R is an open-source programming language developed by the
R Foundation and can be widely used for statistical compu-
tations and representations. The functions which are mainly

used in our project for graph manipulation and related com-
putations, generating synthetic graphs and graph visualiza-
tion are part of the igraph package. We also use the plotly

library which is an online analytical and data visualization
tool. It can be easily integrated in various developer envi-
ronments, thus combined with R can be widely used for data
visualization.

With the help of these tools we designed and implemented
a versatile simulation environment that we use to perform
our experiments. The simulator can handle various network
data structures, while the output of a simulation can be
various plots, data tables, statistics depending on the user
defined parameters. A version of the simulator with limited
functionality that uses the data as input as discussed below
is available online at:

https://kardosorsi.shinyapps.io/stability

The interested readers are cordially invited to visit our web-
site and try out different experiments. The full version of
the simulator is available upon request.

3.1 Data sets
We have performed a wide-range of experiments on various
synthetic and real data sets using different types of pertur-
bations. In the following two experiments are elaborated in
more detail.

S&P 500
Firstly, a correlation based financial graph was used. The
main motivation behind using stock data was to obtain the
perturbation method directly from real-life processes. The
experiments were performed using the daily closing prices
of stocks of the S&P 500 in the period of 01/01/1995 –
31/12/2018, including the assets of 330 leading U.S. com-
panies1. We used a time-window of 200 days to construct
correlation matrices from stock return time series on that in-
terval with starting points T0 = 01/01/1995, Tk = T0+k∆T
with ∆T = 50, k = 1, 2, . . . . This way we obtained 116
consecutive networks, with the fixed set of 330 nodes and
weighted edges represent the correlation coefficient of each
pair of assets on the corresponding time interval. Here, the
changes in edge weights between each consecutive network
pairs simulates the perturbation process.

Cooper-Frieze graph process
Secondly, we implemented the Cooper-Frieze graph evolu-
tion process based on a general model of web graphs pro-
posed in [5]. That is a general model of a random graph
process to generate a graph of power-law degree distribution
as follows. Starting from an initial graph G0 at time t = 0,
the process evolves randomly by the addition of new nodes
and/or edges at each time step t = 1, 2, . . . . The following
six parameters of the process provide a high-level of freedom
in graph generation. With probability α ∈ [0, 1] and 1 − α
a new node is created or an existing node generates edges,
respectively. With probability p = (pi : i ≥ 1) a new node
generates i edges. For new nodes, with probability β ∈ [0, 1]
the terminal node of a new edge is made uniformly at ran-
dom and with 1− β according to degree (i.e. new edges are

1We selected those assets from the S&P 500 list that were
complete in the considered time period.
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Figure 1: KG constant values for degree centrality
measure during the perturbation simulation.

preferentially attached). If an already existing node gener-
ates an edge, where the number of edges given by probability
q = (qi : i ≥ 1), the initial node is selected uniformly with
probability δ and according to the degree with 1 − δ. The
parameter γ has similar role for existing nodes as β had in
the case of new nodes. Using this process we are able to
simulate a graph perturbation process. The initial graph
(at time t = 0) can be set as an input parameter and then
in every time step t = 1, 2, . . . a new (perturbed) graph is
created by the evolutionary graph process.

4. RESULTS AND DISCUSSION
Two main perturbation categories are examined. The first
category is the graph structure perturbation that can be
raised from real-life data (like stock correlations) or syn-
thetic perturbation obtained by rewiring edges selected uni-
formly at random. The other group is raised from graph
evolution. Here we will present our experiments on the S&P
500 data set for the structure perturbation and on Cooper-
Frieze networks for the graph evolution. Results are shown
on consecutive graphs as discussed in Section 3. During our
experiments reported here the degree and eigenvector cen-
trality measures were considered2.

Graph structure perturbation. At the global level, an
interesting result is provided by the behavior of the KG con-
stant value regarding both degree and eigenvector centrality
measures over time, see Figure 1 and Figure 2, respectively.
The mean values for centrality C are calculated as

1

|V |
∑
x∈V

|CG(x)− CH(x)|. (2)

We can observe that for both centrality measures are very
stable, only very slight changes in their values are observed.
Interestingly, these changes happen in periods of crisis. The
increases around 2004, 2007-2008 and 2010-2011 can be no-
ticed. The 2007-2008 period can be associated with the
Lehman Brothers failure, whereas the 2010-2011 may reflect
the Sovereign debt crisis. It is a well-known stylized fact in
finance that assets correlation increases in times of financial
distress. Note that these actual KG values are way lower
than their theoretical bounds.

2Note that a more detailed presentation of our results will
be part of a paper planned to be published later.
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Figure 2: KG constant values for eigenvector cen-
trality measure during the perturbation simulation.
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Figure 3: Kendall’s tau coefficient between rank by
different centrality measures during perturbation

The other interesting aspect in analyzing the stability of the
different network centrality measures is the order or rank-
ing provided by the metrics. The Kendall rank correlation
coefficient [9] is used to measure the ordinal association be-
tween two measured quantities. The coefficient results in
high value when observations have a similar rank (i.e. rel-
ative position label of the observations within the variable:
1st, 2nd, 3rd, etc.) between the two variables. The simula-
tor can be parametrized in order to visualize the correlation
between the order by centrality measures for the different
measures respectively. Therefore it is possible to analyze the
correlation between the two rank vectors during the graph
perturbation procedure. On Figure 3 the Kendall correla-
tion coefficients are reported. The degree centrality stays
quite stable in the range of 0.35 − 0.7, whereas the eigen-
vector centrality shows some seemingly radical changes over
time. We can observe that these extreme changes in rank-
ing shown on Figure 3 are related to the higher KG constant
values regarding the average change in centrality measures
presented on Figure 2.

Graph evolution. The other aspect that we wanted to
study in our experiments was the graph perturbation caused
by some evolutionary process. The concept behind this was
that studying the maximum of the difference in centrality
measures during graph evolution can be an interesting ap-
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Figure 4: KG constant values for degree centrality
measure during the graph evolution process
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Figure 5: KG constant values for eigenvector cen-
trality measure during the graph evolution process

proach regarding many real-life applications. The perturba-
tion behind evolution relies on the fact that in these net-
works new vertices can connect to the initial graph with one
or more edges, also new edges can appear between existing
nodes in the network.

For these experiments the perturbed versions of the initial
graph were provided by the Cooper–Frieze graph process. In
the reported results a graph of two nodes connected with an
edge as initial input graph was used. We started to measure
the centrality stability values after the 100th iteration by
blocks of ten iterations. Thus, at the end of an iteration
block consisting of 10 time steps t, a perturbed graph is
produced with new nodes and edges compared to the graph
from the previous block.

As it can be seen on Figures 4 and 5 the empirical values
of KG bound are about one order magnitude higher than
those for the S&P dataset. Note that they are still much
lower than their theoretical values and they show only slight
fluctuation. Moreover, the mean values (calculated as (2)
converges to zero by the growth of the size of the network.
Similar convergence can be noticed on Figure 6 regarding
the Kendall’s correlation which shows the evidence that even
the nodes ranking remain practically unchanged during the
graph evolution process.
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Figure 6: Kendall’s tau coefficient between rank by
different centrality measures during the graph evo-
lution process
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ABSTRACT
We consider a variant the university timetabling problem,
the problem of assigning courses to time intervals with re-
spect to certain conditions. We define a natural general-
ization of the actual timetabling problem for the Faculty of
Mathematics, Natural Sciences and Information Technolo-
gies at the University of Primorska. We develop a math-
ematical model based on integer linear programming for
solving this NP-complete problem. The model is imple-
mented using programming language Zimpl and evaluated
using Gurobi. A timetable representing the result of the
implementation is compared with the one made by hand.

Keywords
university timetabling, integer linear programming, mathe-
matical modelling

1. INTRODUCTION
Research considering the timetabling problems started dur-
ing the 1950s and until now there are many papers con-
sidering various timetabling problems (see, e.g., [6, 9, 16,
17, 18]). One of the most basic variants of the problem
known as TIMETABLE DESIGN is defined in monograph
by Garey and Johnson [10, SS19]. The problem is known to
be NP-complete.

In this work we consider a variant of the university
timetabling problem, that is, the problem of scheduling a
sequence of teaching sessions involving lecturers and stu-
dents in a predetermined period of time, normally within a
week, while satisfying a set of constraints [17]. The problem
can have additional constraints, which are desired to be sat-
isfied, but do not necessarily have to hold. For that reason,
constraints are divided into two groups: hard constraints
and soft constraints. Hard constraints must be satisfied by
a feasible timetable, while soft constraints represent require-
ments that are desirable to be satisfied, but their violation
has no influence to the feasibility of the solution. Every insti-
tution has its own set of constraints that should be satisfied

∗Supported in part by the Slovenian Research Agency
(I0-0035, research program P1-0285 and research projects
J1-9110, N1-0102, and a Young Researchers Grant), the
European Commission (InnoRenew CoE project, Grant
Agreement #739574, under the Horizon2020 Widespread-
Teaming program) and the Republic of Slovenia (Investment
funding of the Republic of Slovenia and the European Union
of the European regional Development Fund).
†Corresponding author.

when constructing a timetable, so for that reason a gen-
eral solution for university timetabling problems does not
exist. There are some commercial solutions for the univer-
sity timetabling problem (see, for example, [2, 3]). However,
since there is no general solution for the problem, models de-
veloped in commercial solutions often have to be adapted in
order to satisfy the conditions of a specific institution. Dif-
ferences may be large, and their modeling and implementa-
tion represent a difficult and time-consuming process.

An overview of the computational complexity of a number of
university timetabling problems can be found in [13]. For ex-
ample, timetabling problems concerning just time slots and
courses, involving lecturers, students, and an unbounded
number of classrooms of unlimited capacity can be solved
in polynomial time. Furthermore, there are examples of
problems concerning lectures of the same length for which
the number of steps needed for solving the problem is sig-
nificantly reduced in comparison with the same problems
having the lectures of distinct length [7].

One of the first ideas for modelling a timetabling problem
using integer linear programming was developed for a school
timetable during the 1960s by Lawrie [12]. After that the
number of papers presenting similar models grew rapidly.
Nowadays, powerful software is available for solving integer
linear programs (ILPs), so ILP is again one of the main ap-
proaches for solving combinatorial optimization problems,
including timetabling problems. There are various models
in literature, depending on constraints and preferences of
corresponding institutions. One of them is available in pa-
pers by Daskalaki et al. [8] and Daskalaki and Birbas [7],
where a huge set of constraints is represented using linear
inequalities. A nice summary of types of constraints used in
the literature is given by Aizam and Caccetta (see [5]), while
a good description of elements of objective function is avail-
able in a paper by Pereira and Costa (see [15]). One of the
difficulties when using this approach is a big number of vari-
ables and constraints for larger instances of problem. Also,
it is often not trivial to model some very specific constraint,
which is not part of requirements at other institutions, and
sometimes at all to understand the timetable from the ob-
tained solution, which is typically a binary vector of large
dimension.

Our contribution. Although the university timetabling
problem is solved for many institutions (see e.g. [5, 7, 8]),
it seems that these solutions cannot be easily adapted for

1
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an arbitrary new institution. Based on the description of
the teaching process at the proposed institution, we intro-
duce the Famnit Timetable Design problem, that is, the
timetabling problem for the Faculty of Mathematics, Natu-
ral Sciences and Information Technologies at the University
of Primorska (UP FAMNIT). This problem is NP-complete,
see [14]. We develop in Section 3 an integer linear program-
ming model for the problem. The model is implemented with
real data input from the Spring semester of academic year
2016/17 using the programming software Zimpl (see [11])
and Gurobi Optimizer (see [1]). Section 4 contains results
of implementation.

2. THE PROBLEM
In order to model a timetabling problem for some concrete
institution, we have to describe rules and requirements of
the institution that are relevant for the timetable. In this
work we construct a timetable for five working days. We
introduce a number of soft constraints. They are a measure
for the quality of timetable and represent a part of the ob-
jective function, but have no influence to the existence of
a feasible solution. We describe them in Section 3.3. The
Famnit Timetable Design problem is formulated as a de-
cision problem that checks if there exists a feasible solution
of the system, i.e., a timetable that satisfies all the hard
constraints.

Famnit Timetable Design
Instance: a finite set D of days; a finite set T of time slots
(d, h) (day, hour), linearly ordered with respect to the time
line within a 5-day week; we define addition in T so that
given a time slot t and a number i ∈ N, time slot t′ = t+ i
is defined as a time slot being the (t + i)-th element of the
linear order of set T ; for each d ∈ D; a finite set Td ⊆ T
of time slots at day d ∈ D; a finite set M of meetings; a
finite set S of student groups; a finite set L of lecturers;
a finite set R of rooms; a finite set K of locations; subsets
T` ⊆ T and Tm ⊆ T of available hours for each lecturer ` ∈ L
and meeting m ∈ M , respectively (for every meeting the
lecturer is known, so Tm depends on lecturer’s availability);
a subset Tr ⊆ T of available hours for each room r ∈ R; a
subset TAM ⊆ T of morning time slots; subsets Ms ⊆M and
M` ⊆ M of meetings incident with each student subgroup
s ∈ S and lecturer ` ∈ L, respectively; a subset Rm ⊆ R of
available rooms for each meeting m ∈M ; a subset Mk ⊆M
of meetings that take place at location k ∈ K (in our case
k ∈ {1, 2}); for each lecturer ` ∈ L, the maximum number
ρ` ∈ N of hours ` can teach per day; a finite set N of parts
of a day (e.g., morning, noon, evening,. . . ); the set Tn ⊆ T
of all time slots at n-th part of day d, over all d ∈ D; a
set S′ ⊆ S of student subgroups that can only have lectures
within a single part of a day; a set SExt ⊆ S of student
groups consisting of students of external programs; a set
G ⊆M×T×R of pre-scheduled triples; a set F ⊆M×T×R
of unacceptable triples; for any meeting m there is a vector
pm, with element pm(i) = k, if a block of duration i of
meeting m has to be repeated k times per week; for any
meeting m, the set Hm of all block lengths appearing in the
division of meeting m, that is, Hm = {i | pm(i) 6= 0}.

Question:
Is there a timetable that schedules all meetings, that is, a
function f : M × T × R → {0, 1} (where f(m, t, r) = 1

means that meeting m is assigned to time slot t and room r)
that schedules the desired number of hours of all meetings
and satisfies certain constraints. Due to space limitation,
constraints are presented in Section 3 (see also [14, Sec. 4.2]).

3. THE ILP FORMULATION
In this section we describe an integer linear programming
model for the problem.

3.1 Variables of the ILP
There are three sets of binary variables. For every triple of a
meeting m ∈M , a time slot t ∈ T , and a room r ∈ Rm that
is acceptable for that meeting, there is one corresponding
variable xm,t,r. This variable will take value 1 if meeting m
is scheduled at time slot t in classroom r, and 0 otherwise.
For every triple of a meeting m ∈M , a time slot t ∈ T and
a predefined length i ∈ Hm of individual blocks of meeting
m we define a variable ym,t,i.

The variable will take value 1 if time slot t is the first appear-
ance of i consecutive hours of m, and 0 otherwise. In the
last set of variables we have the so called z-variables, auxil-
iary variables for modeling some hard and soft constraints.
For each constraint type p and the corresponding index set
Ip, we define a variable zp,i for every i ∈ Ip. These vari-
ables appear in the modeling of hard constraints of type F
(Section 3.2) and soft constraints of types S2 and S3 (Sec-
tion 3.3).

3.2 Constraints of the ILP
There are six types of constraints.
A) Every meeting has to be assigned to available re-
sources. In this group we have three types of constraints:
lecturers cannot have lectures at unacceptable time slots,
classrooms can only be used at specified time slots, every
meeting has to take place in an acceptable classroom. The
last constraint is satisfied by variable definition. The re-
maining two yield the following linear equations:∑

m∈M`

∑
t∈T\Tm

∑
r∈Rm

xm,t,r = 0, ∀` ∈ L,∑
m∈Mr

∑
t∈T\Tr

xm,t,r = 0, ∀r ∈ R.

B) Overlapping is not permitted. In this group we have
the following constraints: for every student group at most
one meeting and one classroom can be assigned to every
teaching period, every member of the teaching staff shall be
assigned at most one meeting and one classroom at a time,
every classroom can be assigned to at most one meeting at a
time. We model them with the following linear inequalities:∑

m∈Ms

∑
r∈Rm

xm,t,r ≤ 1, ∀s ∈ S,∀t ∈ T,∑
m∈M`

∑
r∈Rm

xm,t,r ≤ 1, ∀` ∈ L, ∀t ∈ T,∑
m∈M xm,t,r ≤ 1, ∀r ∈ R, ∀t ∈ T.

C) Timetable has to be complete.
C1) All meetings in the curriculum of each student subgroup
should be in the timetable and in the right amount of teach-
ing periods, with respect to weekly duration:∑

t∈T

∑
r∈Rm

xm,t,r =
∑
i

pm(i) · i ∀m ∈M.

C2) A meeting m of duration i ∈ Hm has to start and finish
at the same day, so some variables ym,t,i are defined to have

2
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value 0:

ym,t,i = 0 ∀m ∈M, ∀i ∈ Hm, ∀t = (d, h) ∈ T : h > τ−i+1 ,

where τ represents the number of time slots in a day.

C3) Given a meeting m, at most one time slot can be the
first appearance of m in a single day:∑

i∈Hm

∑
t∈Td

ym,t,i ≤ 1, ∀m ∈M, ∀d ∈ D.

C4) A given meeting m of duration i (where i is the index of
a nonzero element of vector pm) has to appear exactly pm(i)
times per week (i.e., in pm(i) days). All such indices i are
contained in Hm, so we have:∑

t∈T

ym,t,i = pm(i), ∀m ∈M, ∀i ∈ Hm.

C5) If a course m of duration i is assigned at day d, it has
to be assigned to exactly i hours:

i·
∑
t∈Td

ym,t,i ≤
∑

r∈Rm

∑
t∈Td

xm,t,r, ∀m ∈M,∀d ∈ D,∀i ∈ Hm.

C6) Appearances of meeting m of duration i in a single day
should be consecutive:

ym,t,i ≤
∑

r∈Rm
xm,t+j,r

∀t = (d, h) ∈ T,∀m ∈M,∀i ∈ Hm,∀j ∈ {0, . . . , i− 1}.

C7) All consecutive hours of one meeting should take place
in the same classroom:

xm,t,r+xm,t+1,r′ ≤ 1 ∀m ∈M,∀t ∈ T, ∀r, r′ ∈ Rm s.t. r 6= r′.

D) Pre-scheduled meetings:

xm,t,r = 1, ∀(m, t, r) ∈ G.

E) Every lecturer ` can have at most ρ` time slots of
teaching obligations per day:∑

t∈Td

∑
m∈M`

∑
r∈Rm

xm,t,r ≤ ρ`, ∀` ∈ L, ∀d ∈ D.

F) Student requirements. Students of external interdis-
ciplinary programs should have lectures just in the morning,
or in the evening, but not both. We define the variable zF,s,d

to have value 1 if condition F is violated for parameters
s ∈ S, d ∈ D; and 0 otherwise.∑
m∈Ms

∑
t∈Td\TAM

∑
i∈Hm

ym,t,i ≤ 2 · zF,s,d, ∀d ∈ D,∀s ∈ SExt,

∑
m∈Ms

∑
t∈Td\TAM

∑
i∈Hm

ym,t,i ≤ 2− 2zF,s,d, ∀d ∈ D,∀s ∈ SExt.

Moreover, it is desired for every student subgroup not to
have meetings at two distinct locations in a day:∑

i∈Hm
ym,t,i +

∑
i∈Hm′

ym′,t′,i ≤ 1,∀d ∈ D,∀s ∈ S,
∀{t, t′} ∈ Td, ∀m ∈Mk1 ∩Ms,∀m′ ∈Mk2 ∩Ms.

3.3 Soft constraints
Among all the implicitly generated feasible solutions, we
would like to find one that satisfies as many soft constraints
as possible. For that reason we define an objective function
with a penalty wp > 0 for violation of constraint p. Some
of the soft constraints are modeled using auxiliary variables,
namely zp,i, for a constraint of type p and for every i ∈ Ip,
where Ip is the index set relevant for constraints of type p.
The variable zp,i has value 1 if the constraint of type p is not
satisfied for element i of the index set Ip, and 0 otherwise.
Here we briefly describe a set of soft constraint in order to
define the objective function.

S1) Minimize use of payable classrooms. Some class-
rooms are available for lecturing, but for an additional pay-
ment, so we want to minimize the use of these classrooms.

S2) Compact timetable. Teaching obligations of teaching
staff should be reasonably grouped during the day: it is not
desirable for one teacher to have some teaching hours in the
morning and then again at the evening, with a long break in
between. For simplicity we denote by L+ the set of teachers
teaching more than one session.

S3) Requirements related to students. For some Mas-
ter’s study programs it is desirable to offer lectures only
within the afternoons time slots TPM ⊂ T . We denote by
MPM the set of meetings relevant to these programs. An-
other constraint related to students’ preferences concerns
minimization of lectures scheduled at Friday afternoon. A
third constraint in this group of constraints concerns upper
bound on number of teaching hours related to one student
group in a day.

S4) Requirements related to lecturers. Every lecturer
` can have some preferences among the time slots in T` and
it is desired to take these preferences into account when
constructing timetable.

3.4 The objective function
Putting together the above constraints, we formulate the
objective function of the ILP model as follows:∑
t∈Tr

∑
m∈M

∑
r∈Rm

wS1,r,t · xm,t,r +
∑
`∈L+

∑
d∈D

wS2,`,d · zS2,`,d+

∑
m∈MPM

∑
t∈T\TPM

∑
i∈Hm

wS3,m · ym,t,i+

∑
m∈M

∑
t∈T5∩TPM

∑
r∈Rm

wS3,m,t · xm,t,r+

∑
d∈D

∑
s∈S

wS3,s,d · zS3,s,d +
∑
`∈L

∑
m∈M`

∑
t∈T

∑
r∈Rm

wS4,`,t · xm,t,r.

4. RESULTS
The ILP model was implemented using the open source
programming software Zimpl [4], and evaluated using the
Gurobi Optimization software [1]. The specifications of
computer used for the computations are: RAM 32GB DDR3

1800Mhz and CPU: Intel i7-3820 3.60GHz. In order to
find an optimal solution of the proposed model, we used
input data for the Spring Semester of the academic year
2016/17 at UP FAMNIT: 17 distinct study programs that

3
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Figure 1: Timetable for one of the student groups
prepared manually (top) and by solver (bottom).

in total define 48 student groups, 185 meetings, 26 class-
rooms, and 65 time slots, and 118 lecturers. The timetable
is prepared for 5 working days and τ = 13 sixty-minutes
time slots within a day.

Using Zimpl we generated an .lp file representing the pro-
posed model for real data in ILP standard form, contain-
ing 171, 455 variables and 2, 752, 376 constraints, where
7, 780, 635 entries of corresponding matrix are nonzero. The
resulting .lp file represents the input for the solver. As
expected, since all variables of the ILP are constrained to
be binary, the complexity of the problem is very large. For
that reason finding an optimal solution of the problem was
a time-consuming process; within 48 hours no feasible solu-
tion was found. We then simplified the objective function so
that just the first term of the objective function remained
in the model. For this simplified objective function, we got
an optimal solution in about 20, 000s.

In order to give the reader some feeling about the quality
of results obtained by the implementation, in Figure 1 we
display timetables produced by hand for the academic year
2016/17 and by solver, respectively, for one of the student
groups.

5. CONCLUSION AND FURTHER WORK
The solution obtained here can be far from the optimum in
general. Nevertheless, the automated approach produced a
timetable that could be used for the desired application. It
can be computed faster than the manually prepared one and
it seems to have good compactness properties. In summary,
this work is a good first step in the process of automating

the approach to the timetabling problem at UP FAMNIT.
Furthermore, as the problem is rather general, its ILP for-
mulation or parts of it may be applicable to other institu-
tions as well. Tasks for future research include simplifying
the model to reduce the number of variables, automating the
data preparation for the model, and improving the formula-
tion of the objective function so that a reasonably good so-
lution for the whole model can be obtained more efficiently.
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ABSTRACT
This paper proposes an extension of the S-graph framework
for minimizing energy usage. The S-graph framework is a
methodology for solving batch process scheduling problems.
It was originally developed for makespan minimization of
chemical batch processes. Since then, the framework has
been extended to various scheduling problems arising in dif-
ferent applications.

The hereby presented extension aims to incorporate sus-
tainability metrics, as objectives and constraints, into the
S-graph framework. The proposed approach can be used to
minimize total energy consumption while satisfying demand
within a given time horizon, waste limitations, and energy
availability.

Keywords
scheduling, combinatorial optimization, sustainability

1. INTRODUCTION
Production scheduling is an optimization problem where
timing and resource allocation decisions have to be made
for a set of given production tasks, while satisfying certain
feasibility constraints. The objective of optimization is, in
most cases, to minimize makespan (total completion time),
but other frequent objectives include throughput and profit
maximization, and cost, tardiness, and cycle time minimiza-
tion.

In this work, the objective is to minimize energy usage,
which is a special case of cost minimization, where only
the energy costs are considered. Apart from the objective
of minimizing energy consumption, the aim to sustainable
production is also reflected in a constraint limiting the total
waste produced. Both energy usage and waste production
is influenced by machine assignment and operation mode
selection.

Considering energy usage and waste production has been
an important aspect of planning and scheduling of chemical
batch processing systems[2] for a long time. But optimiz-
ing sustainability and energy efficiency in various production
systems has gained an increased attention in recent years[1,
5]. The aim of this work is to extend the already versatile
S-graph framework to be able to solve such problems as well.

2. PROBLEM DEFINITION
The given inputs of the problem are the recipes of the prod-
ucts (P ) that have to be produced, the available machines
(M), the length of the time horizon (H), the upper limit
of total waste production (WU ), and hourly energy avail-
ability (EU ). The recipe of product p ∈ P defines the set
of tasks (T p) to be carried out, their precedence relations
(R ⊂ T p × T p), and their timing and resource parameters.

The set of machines that can execute task t is denoted by
Mt. The possible operation modes of executing t by m ∈
Mt is denoted by Otm. The following task parameters are
dependent on the assigned machine and operation mode (o ∈
Otm):

• Duration: do

• Hourly energy usage: eo

• Waste produced: wo

A solution of the problem assigns a starting time (st), ma-
chine (mt), and operation mode (ot) to each task. A solution
is feasible if the following constraints are satisfied:

• Execution periods of tasks assigned to the same ma-
chine do not overlap.

• Precedence relations are satisfied, i.e., if (t, t′) ∈ R, t′

cannot be started before t is finished.

• Every task is finished at time H or earlier.

• Total waste production is at most WU .

• At any moment, the total energy usage of the tasks
being executed is at most EU .

The goal is to find a solution with minimal total energy
usage among the feasible ones.
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3. PREVIOUS WORK
This section explains the basics and the recent advance-
ments of the S-graph framework that the proposed approach
is based on.

3.1 The S-graph framework
The original S-graph framework[4] was developed for min-
imizing makespan. The approach uses directed graphs to
model (partial) schedules. Task nodes (NT ) and product
nodes (NP ) represent the events of starting a task and com-
pleting a product, respectively. Arcs denote the order of
events, where arc weights are the lower bounds of the time
difference between them.

Solution starts with the so-called recipe graph, which only
contains recipe arcs (A1), which denote the technological
order (R). Then a branch-and-bound algorithm is used to
make assignment and scheduling decisions. Scheduling deci-
sions introduce new ordering between tasks which are mod-
eled by adding schedule arcs (A2) to the graph. The detailed
method of adding these arcs to the graph based on different
storage policies, can be found in [4].

An S-graph is denoted as G(N,A1, A2), where N = NT ∪
NP . If a cycle is present in the directed graph (N,A1 ∪
A2), the schedule is infeasible. Otherwise, the length of the
longest path in G is a lower bound on the makespan on
schedules reachable from it, since scheduling decisions can
only add new arcs to G and increase arc weights.

Figure 1 shows an example recipe graph with 3 products,
each consisting of 3 consecutive tasks. One fully scheduled
S-graph of this example is shown in Figure 2. (Weights of 0
are omitted from schedule arcs.) In a complete schedule, the
processing order of tasks assigned to the same machine must
be decided by the directed arcs. In Figure 2 for example,
the task order of machine E1 is 1-9-7.

Figure 1: A recipe graph

3.2 MMRCPSP with S-graphs
The limited energy availability constraint is equivalent to
the resource constraints used in the well-known Resource-
Constrained Project Scheduling Problem (RCPSP), as en-
ergy can be regarded as a renewable resource. The S-graph
framework has been previously extended[6] to the Multi-
Mode RCPSP (MMRCPSP), where tasks can have multiple
possible operation modes with varying duration and resource
usage, just like in the currently investigated problem.

Figure 2: A fully scheduled S-graph

In a resource-feasible schedule, the total resource usage of
tasks being executed at the same time cannot exceed the
resource capacity. To avoid situations where the capacity
may be exceeded, each minimal violating set of task-mode
assignments is identified at the start. During the solution
process, scheduling arcs are inserted in such a way that a
violating set of tasks will not be executed at the same time.

3.3 Minimizing a cost function
Even though the original objective of the S-graph framework
is makespan minimization, it can be used for cost minimiza-
tion with a modified bounding method, while timing infor-
mation can be used for feasibility constraints or cost calcu-
lation. This modification was shown[3] on a crew schedul-
ing problem with routing and lateness penalties. Because
of travel and penalty costs, that approach used a bound-
ing method to approximate costs of future decisions. For
the current problem, approximation is simpler, as only en-
ergy costs are considered, and cost is not affected by timing
related decisions, only by unit assignments and operation
mode selections.

4. PROPOSED APPROACH
The amount of consumed energy depends on the chosen ma-
chines and operation modes only, while timing decisions af-
fect the feasibility of a solution. A two-step optimization
method could be used to sort the solutions of the assign-
ment problem by increasing energy usage, then try to find a
feasible schedule for each, in order. The first feasible sched-
ule found would be the optimal solution. This approach is
good if the problem is not very tightly constrained, and a
feasible schedule can be found among the first subproblems.
However, there is a lot of redundancy in finding a feasible
schedule for subproblems with very similar task-machine-
mode assignments.

In the following, an integrated approach is presented, where
assignment and scheduling decisions are made at the same
level. This approach consists of 3 major modifications to the
original S-graph solution method. They are detailed in the
following subsections.

1. Minimal Resource Incompatible Sets (MRISs) are gen-
erated at the start of the solution process, and their
status is maintained in the search according to the de-
cisions made by branching.
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2. The branch procedure makes assignment and schedul-
ing decisions until the machine and operation mode is
determined for each task, and every remaining MRIS is
resolved by additional scheduling arcs to prevent par-
allel executions of their members.

3. Lower bound of a partial schedule is calculated by
summing up the energy usages of previously assigned
tasks in the chosen operation modes, and considering
the minimum energy usage of unassigned tasks among
their possible machine and mode assignments.

4.1 Generating incompatible sets
A Resource Incompatible Set is a set of task-machine-mode
triplets, whose total resource (energy) usage exceeds avail-
able resource capacity, and the tasks are unique. It is an
MRIS if no proper subset of it has the same property. There-
fore, choosing any 2 tasks from an MRIS and prohibiting
their parallel execution avoids resource violation by that par-
ticular MRIS (and possibly by other ones as well).

For efficient generation of the MRISs, a constraint program-
ming (CP) model is used. Finding all feasible solutions of
the following CP model provides all MRISs:∑

m∈Mt

∑
o∈Otm

xtmo ≤ 1 ∀t ∈ T (1)

waste =
∑
t∈T

∑
m∈Mt

∑
o∈Otm

xtmo · wo (2)

usage =
∑
t∈T

∑
m∈Mt

∑
o∈Otm

xtmo · eo (3)

waste > WU ⇒ infeasible (4)

usage > EU ⇒ incompatible (5)

infeasible ∨ incompatible (6)

incompatible⇒
∑

t∈T :m∈Mt

∑
o∈Otm

xtmo ≤ 1 ∀m ∈M (7)

xtmo · (usage− eo) ≤ EU ∀t ∈ T,m ∈Mt, o ∈ Otm (8)

xtmo · (waste− wo) ≤WU ∀t ∈ T,m ∈Mt, o ∈ Otm (9)

In the model, xtmo is the binary membership variable. Con-
straint (1) ensures that each task appears with at most 1
machine and operation mode assignment in a set. Total
waste production and hourly energy usage of the set are
denoted by waste and usage respectively.

Constraints (4-6) state that an MRIS is infeasible due to ex-
ceeding the waste limit, or incompatible due to their hourly
energy usage. The mode assignment of tasks in an infeasi-
ble MRIS is forbidden, at least one task must be executed
in a different operation mode. The mode assignments of
an incompatible MRIS are prohibited, but the tasks cannot
be executed in parallel in the given operation modes. As
a machine cannot execute multiple tasks in parallel, only
those incompatible MRISs are considered, where each task
is assigned to a different machine, as stated in Constraint
(7). Constraints (8-9) ensure that the set is minimal, i.e.,
removing any member would resolve the incompatibility.

If an MRIS is a singleton, the assignment it contains is for-
bidden. If a task has no permitted assignments, the problem
is infeasible.

Note that machines could be modeled as renewable resources
(just like the hourly energy capacity) with 1 unit as capacity
and usage for each task. However, that would result in many
MRISs with only 2 members, as a machine cannot process
more than 1 task simultaneously. Also, the same 2 tasks
would be present in multiple MRISs, which only differ in the
operation modes. Therefore, machine assignment is handled
separately from other resources such as energy and waste.

4.2 Branch-and-bound algorithm
The main solution procedure of the original S-graph ap-
proach is only slightly modified, the major differences are
in the branching method and bound calculation.

1: procedure Solve
2: I := generateMRISs()
3: S := {(G(N,A1, ∅), NT , I, ∅, ∅)}
4: opt :=∞
5: repeat
6: (G(N,A1, A2), NU , I′, L,X) := takeOne(S)
7: b := Bound(G(N,A1, A2), NU , L,X)
8: if b < opt∧maxPath(G(N,A1, A2)) ≤ H then
9: if NU = I′ = ∅ then

10: opt := b
11: optimal solution := (G(N,A1, A2), X)
12: else
13: S := S ∪

Branch(G(N,A1, A2), NU , I′, L,X)
14: end if
15: end if
16: until S = ∅
17: if opt 6=∞ then
18: return optimal solution
19: end if
20: end procedure

Remaining decisions consist of both unassigned tasks (NU )
and unresolved MRISs (I′). The longest path is used to
determine feasibility, not the objective bound. L contains
the most recent (m, t) task assignment for each machine, or
(m, ∅) if m will not be assigned to any more tasks. X stores
the (t,m, o) task-machine-mode assignments.

1: procedure Bound(G(N,A1, A2), NU , L,X)
2: bound := 0
3: for all (t,m, o) ∈ X do
4: bound := bound + eo
5: end for
6: for all t ∈ NU do
7: bound := bound + min∀m∈Mt,(m,∅)/∈L,o∈Otm(eo)
8: end for
9: return bound

10: end procedure

The bounding function simply sums up the energy usage of
the assignments previously made, and increases it with the
minimum possible usage of unassigned tasks.

Initially, the Branch procedure works in a similar way to
the method proposed by Sanmart́ı et al. [4]: A machine is
selected, and new branches are created where a suitable task
is added to the end of the machine’s production queue (L).
In the investigated problem, operation modes introduce new
assignment decisions. In the new approach, when the task
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is assigned to the machine, the operation mode is decided as
well, and the resulting (t,m, o) triplet is added to X. This
method creates |Otm| new branches for each task t ∈ NU

that can be executed by the selected machine m, instead of
only 1 per task.

Based on the assignment decisions made during branching,
the set of MRISs (I) is updated by removing those that are
resolved. An MRIS is resolved when either of these condi-
tions are met:

1. It contains the currently scheduled task with a different
machine or mode assignment.

2. A new path is created between 2 task nodes that are
contained in the incompatible MRIS.

Furthermore, infeasible MRISs are checked to detect infea-
sible assignments.

After every task is assigned to a machine and operation
mode, the only remaining MRISs are the incompatible ones,
that contain the same assignments that have been made at
the branching steps leading to the current node. In such
a node, the Branch procedure selects one of the remain-
ing MRISs, and introduces precedence relations between its
members. A new branch is created for every ordered pair of
the member tasks, where a schedule arc is added between
the respective task nodes.

5. CONCLUSIONS
Previous extensions of the S-graph framework have been
combined and further extended to provide a theoretical ap-
proach for solving energy minimization problems. The pre-
sented method can be generalized further to handle limits
for separate waste types, additional utilities and resources,
and multiple cost coefficients in the objective function.
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ABSTRACT
Chain codes compactly represent raster curves. To fur-
ther improve the compression, several statistics-based tech-
niques assign shorter extra codes to frequent pairs of con-
secutive symbols. We systematically extend this concept to
sequences of up to six symbols. A curve may thus be de-
scribed by exponentially many overlapped chains, and the
dynamic programming is proposed to determine the optimal
one. We also propose utilization of multiple averaged hard
coded pseudo-statistical models, since the exact statistical
models of individual curves are huge and may also signif-
icantly differ from each other. A competitive compression
efficiency is assured in this way and, as a pleasant side ef-
fect, it is less affected by the shape, rasterization algorithm,
noise, and resolution, than in other contemporary methods.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity; I.4.2 [Computing Methodolo-
gies]: Image Processing and Computer Vision—Compress-
sion (Coding)

General Terms
Algorithms, Performance, Theory

Keywords
Chain code, dynamic programming, pseudo-statistical model

1. INTRODUCTION
Chain codes compactly describe raster curves. More than
half a century ago, Freeman [3] used symbols si ∈ [0 .. 7]
to represent each curve pixel pi with the azimuth direction
from its predecessor pi−1, measured anticlockwise from the
positive x -axis. Several alternative chain codes were later
introduced, but the concept remains the same as in the pio-
neering Freeman chain codes in eight or four directions (F8

and F4): symbols from a small alphabet are assigned to sub-
sequent primitives along a curve. A primitive may refer to a
curve pixel (as in F8), a vertex between the considered curve
pixel and adjacent pixels (Vertex Chain Code – VCC [2], or
Three-Orthogonal chain code – 3OT [10]), an edge sepa-
rating the curve pixel from a background pixel (Differential
Chain Code – DCC [9], or a rectangular cell of pixels (in
quasi-lossless representation from [9]). Meanwhile, a symbol
models some local geometric relation e.g. relative position
of the observed primitive with respect to the previous one.

All these basic representations are efficient, as they use only
2 or 3 bits per primitive instead of coding grid coordinates
with, e.g., 2 · 16 bits per pixel. Nevertheless, numerous
methods have been proposed to additionally compress raster
curves. Statistical coding is often utilized when the symbols’
probability distribution is significantly non-uniform. Fur-
ther advances in statistics-based approaches were achieved
by introducing extra symbols for frequent pairs of primi-
tives [8, 7], or by utilization of multiple statistical models
in the context-based approaches [1]. On the other hand,
non-statistical methods perform various string transforma-
tions [11, 12], e.g. Burrows-Wheeler Transform (BWT) or
Move-To-Front Transform (MTFT) to increase the number
of zeros and prepare the data for run-length encoding (RLE)
and/or binary arithmetic coding (BAC).

In this paper, we introduce a new statistics-based approach
where symbols may represent sequences of up to six prim-
itives. Our aim was to achieve a competitive compression
efficiency, but an interesting pleasant side effect was brought
into focus during the method development. Namely, in-
fluences of the curve shape, rasterization, noise, geometric
transformations, and image resolution on the compression
ratio are significantly reduced in comparison to other con-
temporary methods. This problem has been so far addressed
indirectly within the context-based approaches, while it was
completely neglected in other related works. Section 2 il-
lustrates the overall idea of the proposed approach, while
Section 3 describes the preparation and utilisation of mul-
tiple averaged hard coded pseudo-statistical models, crucial
for the minimization of the aforementioned influences. Sec-
tion 4 experimentally confirms the compression efficiency
and the reduced dependence on artefacts of the input curve.
Finally, Section 5 briefly summarizes the presented work,
and discusses some challenges for the future research.
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2. NEW CHAIN CODE METHOD
Some years after F8 and F4, Freeman proposed the chain-
difference coding (CDC) [4]. A pixel pi is coded with the
angle difference ∠(pi − pi−1, pi−1 − pi−2). Unlike F8 where
all symbols have practically the same probabilities, the 0◦

angle difference is usually much more frequent than other
7 symbols, providing a good basis for statistical coding.
However, some tens of bits have to be spent to store the
best-fitted statistical model (BFSM) for an individual curve,
which is, particularly with shorter curves, not negligible.
Liu and Žalik [6] presented the directional difference chain
coding (DDCC), where CDC BFSMs of over 1000 training
curves are averaged into a suboptimal hard-coded statistical
model (HCSM), which is then used for compression in non-
training use cases. Some years later, the compressed DDCC
(C DDCC) [7] was introduced, where three extra symbols
for usually frequent pairs (±45◦, ∓45◦) and for sequences
of 12 to 27 zeros were added to HCSM. We take a step for-
ward by systematically extending the DDCC coding scheme
with extra codes for sequences of up to six symbols. The
proposed method consists of two separate phases.

1. The training phase provides a representative reper-
toire of training curves, extracts the BFSM for each
curve, classifies BFSMs with respect to some measur-
able curve artefacts, and then derives HCSMs by sep-
arately averaging BFSMs within the classes. The de-
tailed description follows in Section 3.

2. The exploitation phase analyses the input curve in or-
der to heuristically select the most appropriate of the
stored HCSMs. The chosen HCSM is then utilized to
compress the curve. The main challenge in designing
this phase is the strategy for determination of the op-
timal sequence (chain) of codes, which is emphasized
in the following paragraphs.

The existing chain code techniques construct the chain of
codes by a greedy algorithm. A raster curve is parsed prim-
itive by primitive, and each of them is immediately coded
either alone or as a member of some longer pattern. If differ-
ent possibilities for coding a primitive exist, the predefined
priority is decisive. In C DDCC, for example, extra codes for
(±45◦,∓45◦) pairs have higher priority than the correspond-
ing single-pixel codes. However, such priority-based greedy
algorithms cannot be simply adjusted to efficiently handle
higher number of extra codes for longer patterns of symbols.
In the proposed approach, each pixel can be coded with its
own code or, theoretically, with one of 20 codes of longer se-
quences. These include two pairs, three triplets and so on till
six sextets. A longer context of patterns before and behind
the considered symbol determines which of these possibilities
shall be used to code the pixel. We therefore have a combi-
natorial optimization problem where we look for an optimal
chain from a large set of multiply overlapped chains. Unlike
greedy algorithms, we found dynamic programming capable
to provide an optimal choice. Its utilization also facilitates
the so-called context dilution problem [1, 7]. Namely, intro-
duction of extra codes for longer patterns of symbols usually
extends the codes of several symbols and other patterns.

The proposed dynamic programming approach is adapta-
tion of the so-called exon chaining algorithm from the field

Figure 1: The dynamic programming graph with the
optimal chain in bold style.

of bioinformatics, the simplest of the so-called similarity-
based gene prediction approaches [5]. The vertices v1, ..., vn
of the weighted dynamic programming graph represent pix-
els along the curve, and edges correspond to chain codes.
An edge from vi to vi+1 represents a single-pixel code of vi,
and an edge from vi to vj , i < j − 1, represents a joint code
of pixels vi, ..., vj−1. Weights wi,j represent bit lengths of
the corresponding Huffman codes. Let IN(i) represent the
set of left ends of all graph edges with the right end vi. The
dynamic programming algorithm computes the total weight
si = minvj∈IN(i)(sj + wj,i) of the shortest path from v1 to
vi, 1 < i ≤ n. The vertex predi ∈ IN(i), participating to
the minimum, is also memorized. The sn represents the to-
tal bit length of the optimal chain, and the chain itself is
then reconstructed by following the vertices predi from vn
backwards to v1. Bold edges in Fig. 1 represent the optimal
chain for the given example. Patterns v1v2, v3..v5, and v6..v9
are coded with 4 + 6 + 8 = 18 bits. Although the number of
multiply overlapped sequences is exponential (Theorem 1),
the optimization runs in linear time (Theorem 2).

Theorem 1. There are exponentially many multiply over-
lapped chain code sequences if extra codes for patterns of up
to six pixels are used.

Proof. Let ci represent the number of different sequences
to code v1, ..., vi. Each sequence ends with a code for k ver-
tices, 1 ≤ k ≤ min(i, 6), preceded with one of ci−k possible
sequences coding v1, ..., vi−k. Obviously, c1 = c0 = 1, c2 =
c0 + c1 = 2, c3 = c0 + c1 + c2 = 4, etc. In comparison to
the well-known Fibonacci sequence, we have c0 = Fib0, c1 =
Fib1, c2 = Fib2, and ci = Fibi + f(i), i > 2, f(i) > 0. As
the Fibonacci sequence has the proven exponential growth,
the sequence ci also grows (at least) exponentially.

Theorem 2. Optimal chain detection, based on the dy-
namic programming, runs in O(n) time.

Proof. The cardinality |IN(i)|, 1 < i ≤ n, cannot exceed
6, as each vi may only represent the end of patterns of length
from 1 to 6. Computation of si, 1 < i ≤ n thus requires
O(6n) = O(n) time.

3. TRAINING PHASE
To reduce the size of the statistical model and the context
dilution effect, we limit the length of patterns with attached
codes to 6 pixels. Even in this way, the statistical model
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Figure 2: Different levels of forcing the 4-
connectivity: a) 0%, b) 100%, c) 50%, and d) spe-
cial scenario where 4-connectivity requires adjacent
edges at least 2 pixels long.

derived from the basic DDCC scheme can theoretically con-
tain 8 + 82 + . . . + 86 = 299, 592 entries. Although many of
these patterns never appear in practice, and even if we man-
age to further reduce the model size (to some tens entries
in practice), there is the only possibility to use an averaged
statistical model (or more of them). Its derivation requires
a careful consideration of the following important issues.

3.1 Training set
Whatever averaged statistical model we construct, it can-
not equivalently replace the BFSMs of any curve. Although
the relative compression ratio to F8 only slightly varies in
C DDCC (between 0.46 and 0.55) and similarly in other ex-
isting methods, we must be aware that the training sets and
testing use cases in their presentations usually followed some
curve creation and rasterization methodology and, thus, they
had some evident common artefacts. In C DDCC tests, for
example, there were a huge probability of shorter sequences
of 0◦ symbols, relatively high probabilities of (±45◦,∓45◦)
pairs, and rather low probabilities of ±90◦ symbols. As the
distributions of longer patterns from a bigger repertoire are
much less predictable, we decided to use multiple averaged
statistical models and, consequently, to cluster the training
set and testing use cases with regard to some chosen measur-
able artefacts. In this manner, the method gains generality,
as the compression efficiency becomes less dependent on the
curve creation and rasterization methodology. To provide an
adequate training set and a relevant mixture of testing use
cases, we have implemented a tool with functionalities of im-
age rotation and scaling, manual inversions of binary values
of selected pixels, and extraction of the bounding contour of
the presented binary object. In this last operation, the pa-
rameter “Force 4-connectivity” controls the amount of ±90◦

symbols along the diagonal edges (Fig. 2) and, thus, sim-
ulates different rasterization methodologies. Basic shapes
used in the training set and testing use cases are shown in
Fig. 3, but we actually used a variety of instances of these
shapes in different resolutions and orientations, and with
different levels of forcing the 4-connectivity.

3.2 Statistical model reduction
To reduce huge amount of data in each BFSM and to mit-
igate the context dilution effect, a pattern P = x1..xk is
inserted in the statistical model only if its probability p1..k
is higher than the product of probabilities (weighted with
w2) of any sequence of shorter patterns whose concatena-
tion forms P . To prevent insertion of too low probabilities,
we use additional threshold w1. The following statement
considers patterns of length k = 3.

Figure 3: Examples of training and testing objects.

if (p123 > max(w1, w2 ∗max(p1p2p3, p1p23, p12p3)))
then insert (x1x2x3, w3 ∗ 3 ∗ p123) into BFSM.

For patterns of lengths 2, 4, 5 and 6, additional 1 + 7 + 15 +
31 products have to be tested. Obviously, the method must
first evaluate shorter patterns, as their probabilities are used
in acceptance criteria for longer ones. Single-pixel symbols
are unconditionally included in the BFSM to provide ter-
minability of the dynamic programming optimization. In
current tests, the weights w1, w2 and w3 are set to 0.02, 1.0
and 1.0, respectively, while we intend to determine them
heuristically in the future.

3.3 Statistical vs. pseudo-statistical model
We do not wish (and neither we are able) to distribute the
probabilities of particular symbols and patterns among dif-
ferent longer patterns, as this would actually lead to the
priority-based greedy approach, which we intentionally try
to avoid. This means that each symbol participates to prob-
abilities of all the patterns, which include it. We there-
fore do not deal with true statistical models, as we use
weighted probabilities (multiplied with w3∗k). Furthermore,
the sum of weighted probabilities in such pseudo-statistical
model may be theoretically as high as (1 + 2 + 3 + 4 + 5 +
6) ∗ w3 = 21w3. Nevertheless, all weighted probabilities are
involved in a single Huffman tree construction. The best fit-
ted and averaged pseudo-statistical models will be labelled
BFPSMs and APSMs in continuation.

3.4 Averaging the pseudo-statistical models
Averaging is a two-stage process. The BFPSMs of the train-
ing set curves are first classified with regard to some mea-
sured curve artefacts. In each class, the corresponding APSM
is then constructed by using the same acceptance criteria as
in the BFPSM reduction. During the determination of the
BFPSM, we have computed several features of the consid-
ered curve that will be used in the future to experimentally
select optimal classification criteria. Currently, we use three
criteria listed below, each with a single threshold, partition-
ing the BFPSMs into two classes.

• Average turn per pixel. Each ±45◦ symbol participates
1 to this value, ±90◦ symbols participate 2, ±135◦

symbols participate 3, and each 180◦ symbol partici-
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Table 1: Compression rate in bits per pixel (bpp) of
the state-of-the-art (SOTA) and the new method

Object Transform Pixels bpp bpp (new
(SOTA) method)

Bird 100, 0, 0 4080 1.11 1.03
Butterfly 100, 0, 0 1122 1.45 1.33

Car 100, 0, 0 541 1.48 1.25
Circle 100, 0, 0 1831 1.13 0.99
Horse 100, 0, 0 2143 1.51 1.39
Bird 100, 50, 70 671 1.60 1.31

Butterfly 140, 45, 100 2681 1.68 1.21
Car 200, 33, 50 1472 1.84 1.49

Circle 20, 0, 0 308 1.39 1.06
Horse 50, 15, 20 1284 1.93 1.51

pates 4. The total sum is then divided with the curve
length in pixels. This feature separates smooth curves
from more winding and noisy ones. It is also strongly
correlated with the (expectedly high) probabilities of
0◦ symbols and their longer runs.

• Probability of (±45◦,∓45◦) pairs is higher in curves
with oblique segments than in those with mostly axis-
aligned and/or ideally diagonal segments.

• Probability of ±90◦ symbols is closely correlated with
the value “Force 4-connectivity”, although the latter
only controls the amount of concave right angles and
does not affect the convex ones.

Three single-threshold criteria result in 8 classes. To mit-
igate impacts of suboptimal training set, classification cri-
teria and thresholds selection, we use soft borders between
the APSMs. Before averaging, each class is extended with
the weighted probabilities from BFPSMs of all ”adjacent”
classes, distinct in one criterion from the considered class.

4. RESULTS
Table 1 shows typical results of our early testings of the pro-
posed method on different instances of some objects from Fig
3. With the basic ”user friendly” configurations (the top five
lines), the new algorithm is for 10− 15% more efficient than
the compared methods (3OT, VCC, C DDCC, and best of
MTFT+ARLE [11] variants). This difference increases to
25− 40%, when more sophisticated configurations with the
scaling factor, rotation angle, and/or amount of additional
4-connectivity pixels different from 100%, 0◦, 100%, respec-
tively (see column Transform), are considered.

5. CONCLUSIONS
In this paper, we introduce a new statistics-based cain code
compression methodology by using multiple averaged pseudo-
statistical models correlated with some measurable curve
artefacts, and by heuristically selecting the most appropri-
ate model prior to the compression. Furthermore, the intro-
duced models contain systematically inserted extra codes for
patterns of up to six symbols, and the dynamic programming
approach replaces the common greedy method in order to
determine the optimal chain of patterns and corresponding
codes. The first results are promising, but there is a plenty of

work left in order to ultimately affirm the proposed method-
ology. Our future goals include among others:

• direct comparison to modern non-statistical methods
both, on ”standard” and less ”user-friendly” cases,

• adaptation of the introduced methodology to other ba-
sic chain code representations (VCC, 3OT, F4, F8, and
NAD - normalised angle-difference chain code [11]),

• experimentation with varying the classification crite-
ria, number and values of particular classification thresh-
olds, weights in the pattern acceptance criteria, etc.,

• improving the training set and preparation of rich reper-
toire of benchmarks, and

• RLE codes for longer patterns of zeros.
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ABSTRACT
Many combinatorial optimization problems of practical rele-
vance can be formulated as Maximum Satisfiability problems
(MaxSAT). There is an easy polynomial reduction from SAT
and hence MaxSAT to the Maximum Independent Set Prob-
lem (MIS). We propose a fast heuristic algorithm for the MIS
called Conflict Resolving (CR) and apply it to transformed
MaxSAT instances. The algorithm on the transformed in-
stances performs equally well and sometimes even better
than MaxSAT solvers directly applied to the MaxSAT in-
stances do. We prove this with experimental results where
we compare our approach to state-of-the-art MaxSAT solvers
submitted for the MaxSAT challenges of 2018 and 2019 in
the incomplete track.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
G.2.3 [Mathematics of Computing]: Applications; J.6
[Computer Applications]: Computer-Aided Engineering

General Terms
Algorithm, Applications

Keywords
Heuristics, Optimization, SAT, Maximum Independent Set

1. INTRODUCTION
There is a wide interest in algorithms that solve SAT and
MaxSAT because many practical combinatorial optimiza-
tion problems can be encoded as such. For example, the Pe-
riodic Event Scheduling Problem can be encoded in SAT and
solved with the help of fast SAT solvers[8]. Moreover, there
are applications in data analysis [4], model checking [5], find-
ing bounds on Ramsey numbers [10] and many more. In this

∗Corresponding author.

paper, we propose a novel approach for solving MaxSAT in-
stances by reducing them to the Maximum Independent Set
Problem (MIS). The reduction to MIS has been studied be-
fore [9] but we are the first ones to benefit from the fast
MIS heuristic CR. There are also heuristic algorithms for
the SAT problems itself [11] but even though our reduc-
tion makes the problem instances bigger, with our approach
we are compatible and on some instances even better than
state-of-the-art SAT solvers.

In the very broad problem class of SAT, one deals with a
Boolean formula and the task is to determine whether or
not there exists an interpretation of the formula. That is an
assignment of true or false to all literals such that the for-
mula evaluates to true. A formula is in conjunctive normal
form (CNF) if the literals are grouped in clauses where they
are connected with or and the clauses are connected with
and. All SAT instances can be formulated in CNF so we
can assume a formula is in CNF. The task is then to fulfill
all or as many clauses as possible. The latter case is called
the MaxSAT problem. A clause is fulfilled if it evaluates to
true. Note that we apply a heuristics so we cannot guaran-
tee optimality for the MIS and hence, not all clauses might
be fulfilled. This is why we focus on the MaxSAT problem.

The outline of this paper will be as follows. In the following
section, we explain the reduction from SAT to MIS. Then,
in Section 3, we sketch our heuristic algorithm. In Section 4,
we give experimental results on recent MaxSAT challenges
and finally, we give a conclusion and an outlook in Section 5.

2. REDUCTION FROM SAT TO MIS
Given an undirected graph, an independent set is a set of
vertices such that no two of them share an edge. It is well
known that the MIS is NP-complete [7].

The SAT problem can be reduced to MIS in the following
way [9]. Each pair of one clause and one literal gives rise to
a vertex. Two vertices are joined by an edge if their literals
come from the same clause or if one literal is the negation
of the other one. By maximality, an optimal solution of the
MIS assigns one literal from each clause, if possible. Hence,
a maximum independent set yields an interpretation of the
formula where maximally many clauses are fulfilled. For
the backwards transformation, each vertex from the inde-
pendent set stands for some literal which is the value in the
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Figure 1: Example SAT to MIS

SAT solution. Note that if a literal is chosen, then its nega-
tion cannot be in the independent set which ensures that
the MIS solution yields a feasible SAT solution.

Example.

(a ∨ b ∨ c) ∧ (b ∨ c̄ ∨ d̄) ∧ (ā ∨ c ∨ d) ∧ (a ∨ b̄ ∨ d̄)

In this example taken from [6], we are dealing with 4 clauses
and 4 literals. In Figure 1, see the graph reduced from the
example. In blue, we have marked an independent set of
size 4. This implies that all 4 clauses are fulfilled. The SAT
solution reads a and c is true, d is false and b can be either
true or false, which does not change the objective value.

It is clear that this reduction can be done in polynomial time
as there are number of literals times number of clauses many
vertices in the reduced graph.

As in our case we cannot guarantee optimal solutions for the
MIS, we can only find feasible solutions that fulfill many of
the clauses. Hence, we cannot deal with hard clauses that
necessarily have to be fulfilled. Therefore, we only consider
instances with merely soft clauses which are called MaxSAT
instances and are also widely studied.

3. CONFLICT RESOLVING ALGORITHM
We propose a fast heuristic algorithm for solving the MIS
called Conflict Resolving (CR). The algorithm locally im-
proves the solution by iteratively picking a non-solution ver-
tex and trying to include this vertex in the solution. There-
fore, its solution neighbors have to be replaced by their non-
solution neighbors not incident to any other solution vertex.
If this step can be performed, the solution size has grown by
1 without violating the property of an independent set.

In Figure 2, see how such an improvement can be performed.
The root vertex in the middle is considered to be inserted
into the independent set. Therefore, its blue neighbors need
to leave the independent set, but must be replaced by one
non-solution neighbor each, highlighted with a shallow blue.
Of course, the replacement can only be performed if these
vertices do not have a second neighbor in the solution set
and there is no edge among them not to the root.

Figure 2: A root vertex to be improved (in the mid-
dle), its solution neighbors (blue), and their chil-
dren, possibly replacing their parents.

After iterating over all non-solution vertices, we have arrived
in a local maximum. In order to be able to leave it for a
better solution, we additionally deploy a perturbation step
in the beginning of the algorithm where a random vertex
is forced into the solution, leading to its solution neighbors
to leave the solution. Since this might worsen the solution,
we embed the algorithm in a simulated annealing framework
and allow this worsening only with a probability that gets
smaller the later the phase in the algorithm. Else, we restore
the previously found best solution.

In Algorithm 1, see the overall procedure of perturbation,
improvements and solution checking until some maximum of
iterations is reached. This pattern is inspired by a state-of-
the-art MIS heuristic proposed by Andrade et al. [3] but they
use different solution checking and improvement procedures.

Algorithm 1 ConflictResolving()

while iteration limit has not been reached do
Perturb solution by brute force insertion of one vertex
Improve solution by replacing k by k + 1 vertices every-
where possible
Check solution and allow worsening with decreasing
probability

end

4. EXPERIMENTAL RESULTS
As testing instances, we use those instances of the MaxSAT
Challenges 2018 [1] and 2019 [2] with merely soft clauses. All
these instances are derived from various real-world applica-
tions such as timetabling or scheduling and general problems
such as mincut, treewidth computation and many more.

We have applied the reduction from MaxSAT to MIS and
subsequently applied the CR algorithm. The numbers in
Tables 1 and 2 show the number of soft clauses violated per
instance. Hence, the lowest value is the best result. All
runs have a time limit of 300 seconds for the 2018 instances
and 60 seconds in the 2019 case. We have performed all our
computations on an Intel(R) Core(TM) i7-8700K. As the
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Table 1: Results from 2018 with 300 seconds computation time
Benchmark (number of soft clauses) RC2-B RC2-A maxino MaxHS Open-

WBO-
Gluc

Open-
WBO-
Riss

LMHS QMax-
SAT

CR

maxclique-brock800-2 (800) 782 780 780 782 780 781 781 781 779
maxclique-p-hat1000-1 (1000) 991 990 990 991 990 990 990 990 990
maxclique-p-hat1000-2 (1000) 958 954 955 959 959 960 960 960 954
set-covering-scpclr11 (1353) 23 23 26 23 31 30 34 32 33
set-covering-scpclr12 (2542) 23 26 26 23 33 33 35 35 35
set-covering-scpclr13 (4810) 29 28 29 29 35 34 34 34 35
set-covering-scpcyc06 (432) 60 60 60 60 72 71 71 74 61
set-covering-scpcyc07 (1120) 150 144 151 150 192 203 199 187 151
set-covering-scpcyc08 (2816) 357 346 389 356 448 552 573 488 360
set-covering-scpcyc09 (6912) 830 805 1285 828 1024 1343 1321 1150 843
set-covering-scpcyc10 (16640) 1916 1890 5540 1915 2304 11401 3685 2626 1926
set-covering-scpcyc11 (39424) 4320 4282 28160 4320 5120 27951 7495 8779 4371

CR is a randomized algorithm, we started 3 runs each and
display the mean here.

See the results in Tables 1 and 2 for instances from 2018
and 2019, respectively. We see that our approach yields
compatible results and often even the best solution. While in
the 2018 instances, our results are the best for all Maximum
Clique (MC) instances and not much behind the winning
algorithm of the other ones, in the 2019 challenge we even
achieve the best result in almost half of the cases. The
only instances where our approach performs poorly are the
instances for bounding a Ramsey number, such as ram-k4-
n20. We firstly conclude that our approach performs best on
MC instances which is a similar problem to MIS. Secondly,
CR outperforms other solver when the time is limited as we
compete better within 60 than 300 seconds.

5. CONCLUSION AND OUTLOOK
We have seen that reducing MaxSAT instances to MIS and
then solving it with CR is similarly good and often even
better in terms of good results in short time compared to
state-of-the-art MaxSAT solvers.

As an outlook, it would be interesting if we can include
hard clauses in our MIS heuristic. We think that this will
not be a trivial task as for the MIS, one can always find
a feasible solution, the empty set for instance. Finding a
feasible solution for SAT, however, is NP-complete. In this
respect, exact algorithms might be the better choice.

Finally, there are many problem specific instances from real-
world applications that are encoded in SAT. We think that
often, it would be even faster to find a direct encoding of the
problem as a MIS instead of the proposed reduction. We
plan to enable CR to identify instances that can be formu-
lated in MIS directly. For example, in the trivial case, when
an originally MIS instance is encoded in SAT, the algorithm
should not reduce the SAT encoding as described above, but
rather identify the MIS as such and solve it immediately.
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Table 2: Results from 2019 with 60 seconds computation time
Benchmark (number of soft
clauses)

Loandra LinSBPS-
2018

SATLike Open-
WBO-g

sls-mcs-
lsu

sls-mcs Open-
WBO-
ms

CR

brock200-1.clq (1132) 180 180 179 179 181 181 180 272.5
brock400-2.clq (1188) 258 257 252 261 252 252 256 287
brock400-3.clq (400) 378 377 375 378 378 378 378 371
brock800-1.clq (1022) 212 205 205 224 205 205 217 235
brock800-3.clq (800) 781 780 779 781 782 782 782 779
hamming10-4-1024 (1024) 984 992 984 986 992 992 989 984
MANN-a45-1035 (1035) 693 690 695 694 693 693 693 691
MANN-a81-3321 (3321) 2225 2221 2225 2235 2225 2225 2225 2221
p-hat1000-1.clq (1000) 990 990 990 990 990 991 991 990
p-hat1000-3.clq (1000) 935 935 932 945 938 938 947 932
p-hat500-2.clq (500) 464 465 464 466 470 470 468 464
p-hat700-1.clq (700) 690 689 689 689 691 691 690 689
p-hat700-3.clq (700) 642 641 638 645 644 644 645 638
ram-k3-n10.ra0 (300) 4 4 4 4 4 4 4 4
ram-k3-n11.ra0 (495) 7 7 7 7 7 7 7 7
ram-k3-n12.ra0 (715) 10 10 10 12 10 10 11 12
ram-k3-n13.ra0 (1001 16 16 16 16 16 16 20) 17
ram-k3-n14.ra0 (1365) 21 23 21 27 21 21 27 23
ram-k3-n15.ra0 (1820) 30 31 30 31 30 30 35 33
ram-k3-n16.ra0 (2380) 40 40 39 41 39 39 47 43
ram-k3-n17.ra0 (3060) 58 50 50 51 50 50 61 65
ram-k3-n18.ra0 (3876) 63 60 60 92 60 60 98 80
ram-k3-n19.ra0 (4845) 84 76 75 83 75 75 126 95
ram-k3-n20.ra0 (5985) 102 95 90 97 90 90 124 153
ram-k4-n18.ra0 (6120) 14 11 9 31 9 9 29 22
ram-k4-n19.ra0 (7752) 25 18 15 80 15 15 42 46
ram-k4-n20.ra0 (9690)) 37 33 24 116 24 24 67 85
sanr200-0.9.clq (200) 162 160 158 162 160 160 161 158
sanr400-0.5.clq (400) 388 388 387 388 389 389 388 387
sanr400-0.7.clq (400) 380 379 379 380 382 382 381 379
scpclr11-maxsat (1353) 29 26 24 36 23 23 35 32
scpclr12-maxsat (2542) 29 29 28 40 28 23 40 35
scpclr13-maxsat (4810) 28 29 30 45 30 29 45 35
scpcyc06-maxsat (432) 60 62 60 73 60 61 73 60
scpcyc07-maxsat (1120) 149 151 158 191 153 154 204 152
scpcyc08-maxsat (2816) 385 410 392 490 366 364 557 357
scpcyc09-maxsat (6912) 960 1387 838 1077 838 831 1316 839
scpcyc10-maxsat (16640) 2253 5540 1936 2497 1925 1920 7728 1930
scpcyc11-maxsat (39424) 5793 28160 4352 28160 4321 4321 28160 4379
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ABSTRACT
We look closely to two NP-hard problems, the minimum
vertex cover and the maximum clique problem. Strictly from
mathematical point of view they are absolutely the same
problem. Interestingly some algorithms are better for the
first one and other for the second one. Why is there such a
difference? Can one make a better algorithm by combining
the two approaches?

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms
Theory

Keywords
minimum vertex cover, maximum clique, kernelization

1. INTRODUCTION
Let G = (V,E) be a finite simple graph. The graph does
not contain any double edges and the graph does not contain
any loops. Let G′ = (V,E′) be the complement of G, that
is iif x, y ∈ V, x 6= y, {x, y} /∈ E then {x, y} ∈ E′

The subgraph ∆ of G is a clique in G if each two distinct
nodes of ∆ are adjacent in G. The number of nodes of ∆
is called the size of the clique ∆. A clique ∆ is a maximum
clique in G if G does not contain any clique whose size is
bigger then the size of ∆. A usual task is to find the size
(and possibly show an example) of a maximum clique. It is
an empirical fact that finding cliques in a given graph has
many applications inside and outside of computer science [2,
8, 11, 13, 3, 15, 18].

A set of nodes C of G′ is a vertex cover of G′, that is each
edge of the graph G′ is incident to at least one node of the

set. A vertex cover C is a minimum vertex cover if there is
no smaller vertex cover. A usual task is to find the size (and
possibly show an example) of a minimum vertex cover.

2. COMPARING VERTEX COVER AND
CLIQUE SEARCH

As it is well known, if C is a vertex cover of G′ then V \ C
is an independent set in G′, and so a clique in G. Also, vice
versa, if ∆ is a clique in G, and so an independent set in
G′, then V \ ∆ a vertex cover in G′ [10]. Consequently, if
C is a minimal vertex cover of G′ then V \ C is a maxi-
mum clique in G, and vice versa. This observation makes
the two problems exactly the same from mathematical point
of view.1 Unsurprisingly the decision version of these prob-
lems are both listed among Karp’s original 21 NP-complete
problems [10].

The message of the mathematical equality says that one
could freely use a maximum clique search program for find-
ing minimum vertex covers or the other way around. Sur-
prisingly T. Akiba and Y. Iwata in [1] found the opposite.
They compared a Branch and Bound algorithm of their own,
a known ILP formulation solved by CPLEX and a maximum
clique search program MCS by Tomota et al. They used
real large sparse network examples that often used in ver-
tex cover comparisons and graphs from the second DIMACS
challenge often used in maximum clique comparisons. They
found the two approaches (their own and CPLEX being one
and MCS the other) work better on “their own” instances.
“We first observe that B&R and CPLEX clearly outperform
MCS on real sparse networks. (. . . ) In contrast, on DI-
MACS instances, as it is tailored to these instances, MCS
generally works better.” Note, that the differences are not
small but extremely big, and almost without counterexam-
ples. There were instances that one approach could solve in
couple of seconds while the other approach could not solve
in 24 hours and vice versa.

To resolve the contradiction one can consider three possi-
bilities: 1) against the above facts there are major differ-
ences between the two problems; 2) there are no differences,
but the usual tests are different in some ways; 3) there are
no differences, but the algorithmic approaches are differ-
ent. We believe that 2) was true from the beginning, and
therefore, as a consequence 3) became true as well. Mainly,

1There are differences from point of view of parametrized
complexity and approximability, but these differences are
out of the scope of this paper.
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the clique search programs usually deal with small hard in-
stances, while the vertex cover community deals with huge
but somehow easy instances. The vertex cover search is done
with lots of preconditioning, nowadays called kernelization.
This reduces the original instances to a smaller kernel, which
is the really hard part of the problem. So this community
is focused on and strong in regard of reducing the problems.
The clique search community faces problems that are hard
to precondition, so they are much stronger in dealing with
the hard problems themselves. If our belief is true, then
it explains the extreme difference in the T. Akiba and Y.
Iwata paper. The vertex cover solvers far from perfect when
dealing with really hard problems. Also, the clique search
programs simply do not try to do any preconditioning and
so fails to deal with huge graphs.

If our belief is true, then the combination of the two ap-
proaches could be good in both scenarios. As it turns out
that is exactly the case, as it will be shown. We added to our
maximum clique search program [17] – slightly upgraded –
some kernelization steps. The resulting program turned out
reasonably competitive in both scenarios.

The structure of the paper as follows. First, we detail the
used kernelization methods, which should reduce the prob-
lem. Second, we shortly describe our maximum clique search
program, which deals with the hard kernel. Third, we dis-
cuss the results of the combined program.

3. USED KERNELIZATION METHODS
3.1 Dominance
First, we used the method called dominance. That is two
nodes v and x are not connected, but the neighborhood of
x is included in the neighborhood of v, then v dominates x
and x can be deleted.

3.2 The “struction” reduction
Second, we used the subset of the method “struction” [7],
namely those transformations that would always reduce the
size of the graph. Also, we restricted ourselves to transfor-
mations that could be implemented by transformations “in
place”. That is no new nodes needed to be added to the
graph.

Note, that the present program tries to be a simple one, so
lots of other methods has been left out: magnets, removing
unconfined vertices, twins, funnels, desks, also if the graph
consists of several components, etc. . .

In details, the above two approaches lead to these steps:

• Full (n−1) degree node v: it is in the maximum clique
(MC), so not in the minimum vertex cover (MVC).

• n−2 degree node v (1 non-neighbor): the non-neighboring
node is dominated, so can be deleted (in MVC), node
v in MC (not in MVC).

• The non-neighbors of a node v are not connected to
each other – no edges in the non-neighborhood: the
non-neighboring nodes are dominated, can be deleted
(in MVC), node v in the MC (not in MVC).

• Node v has degree n− 3 (2 non-neighbors), which are
connected: these nodes can be folded. (The non con-
nected case is a subcase from the previous.)

• Node v has degree n− 4 (3 non-neighbors – x, y, z):

1. x, y are connected, z is a singleton: z is domi-
nated, can be deleted (in MVC), x, y can be folded.

2. x, y and y, z are connected: the two edges both
can be folded.

3. all three nodes are connected: we can fold the
x, y, z triangle according to [7].

• If in the subgraph spanned by the non-neighbors of a
node all the nodes are degree 1 nodes – that is it has
non intersecting edges: we can fold these edges at once.

• If in the subgraph spanned by the non-neighbors of a
node there is a star, that is a central node to which
all other nodes are connected: we can fold all edges at
once.

• If in the subgraph spanned by the non-neighbors of a
node v there are singleton nodes (not connected to any
other nodes): these nodes dominated by v and thus can
be deleted.

3.3 Chromatic degree
Third, we used the chromatic degree of a node. That is we
color the graph by any valid coloring, the chromatic degree
of a node is the number of colors appear in its neighborhood.
If the chromatic degree is less than k − 1 that means this
node cannot be in a k-clique, and so can be deleted – thus
it should be in the minimum vertex cover.

4. MAXIMUM CLIQUE SEARCH
As known from the literature (see [6]) one can often build a
more efficient parameterized algorithm than a general one.
So we followed this path and build our own program named
kclique, which instead of solving the maximum clique opti-
mization problem deals with the k-clique decision problem.
Based on this program we could build a very simple and
yet efficient maximum clique search program, which we call
kclique-sequence. Here we summarize the main properties
of this approach. For more detailed description see [17].

The main idea behind our program is the strong reduction of
the size of the search tree. For both branching and bound-
ing the choice of searching for k-clique helps us to reduce
the search tree. Because we should decide if a k-clique ex-
ists we can always bound by the value of k. In details, for
branching we can use the value of k as follows. It is well
known, that the number of colors from any coloring gives an
upper limit for the clique size. Thus if given the value of k
and a coloring with c colors (c ≥ k), then we can choose the
smallest c− (k− 1) color classes, and use the nodes in them
for branching – as a branching rule. As a terminology we
will call these nodes a k-clique covering node set (KCCNS),
as introduced in [16]. The importance of this comes from
the nature of the Branch and Bound algorithms. These al-
gorithms sort out the already examined nodes, meaning that
they are not taken into account in the future search. Thus
if all these nodes are eliminated, then the remaining nodes
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can be colored with (k−1) colors, so there cannot be any k-
clique present. Note, that without the value of k one cannot
make this branching rule, and need to branch on all nodes.

Algorithm 1 summarizes our kclique algorithm based on this
branching rule.

Algorithm 1 kclique

Require: G = (V,E), P = V
1: function kclique(P, k)
2: if k = 1 then return true
3: end if
4: KCCNS ← construct a k-clique covering node set
5: for all vertex p ∈ KCCNS do
6: if kclique(P ∩N(p), k − 1) then return true
7: end if
8: P ← P \ {p}
9: end for

10: return false
11: end function

We used coloring procedure named DSatur due to Brélaz
[4] and also used in addition another technique, the Iterated
Coloring presented by Culberson [5]. This technique uses
reordering of the color classes and using a sequential coloring
several times. The result cannot be worse than the previous
coloring in terms of the number of colors, but it can be
better. The experiments showed, that in fact the iterated
recoloring reduces the number of colors quite well in most of
the cases [12]. Thus we started from a Dsatur coloring and
performed iterated coloring. Our stopping criteria was if the
number of colors did not decreased after 1000 iterations, and
we used this method on the top of the search tree.

During the Branch and Bound procedure, when there are
less and less nodes as we go down on the search tree, we
can reuse the coloring of the previous level, and use the
repacking feature of the sequential greedy coloring. We sort
the color classes by their size, and start a greedy sequential
coloring from the biggest color class. As the k-clique cov-
ering node set is actually the c − (k − 1) sets of smallest
color classes, the nodes from them moved ahead to the big-
ger color classes. This procedure directly reduces the size
of the k-clique covering node set and so the branching fac-
tor. Our tests showed, that using this method the size of
the search tree is comparable with that when we would use
a DSatur coloring at each level while greatly reducing the
running time.

From previous results [19] on parallel clique search algo-
rithms we concluded, that the ordering of nodes is even more
important than it was thought before. It seems that the se-
quence of the nodes by which we proceed in the branch has a
big effect on the search tree size if pruning is present. This
was shown for SAT problems [14]. This effect is used by
our algorithm, and so it reduces the search space. We use a
very basic reordering rule. We proceed with the nodes with
the smallest degree in the remaining subgraph, that is, we
used sequence of increasing node degrees. By doing this we
solve first the easier problems and reduce the sizes of the
later ones. Although simple and algorithmically cheap this
approach had quite a good effect on the size of the search
tree.

The structure of our maximum clique problem is extremely
simple. First we find an lower bound for the size of the
maximum clique. This is done by a simple greedy clique
search algorithm. We set k equal to the obtained number
plus one and run our kclique program with this parameter.
If the result was that the graph do contain a k-clique we
increased the value of k by one. Repeating this procedure
as a sequence our program finally finds the smallest value
of k for which there is no k-clique present. Thus ω(G) =
k−1. We call this program kclique-sequence, see Algorithm
2. Note, that the program calls Algorithm 1 several times.

Require: G = (V,E)
function main

k ← an lower bound by greedy clique search
kclique-seq
Print k − 1 as the size of the maximum clique

end function

Algorithm 2 kclique-sequence

1: function kclique-seq
2: FOUND ← true
3: while FOUND do
4: FOUND ← kclique(V, k)
5: if FOUND then
6: k ← k + 1
7: end if
8: end while
9: return k

10: end function

5. RESULTS AND EVALUATION
Our new program uses a combined algorithm of precondi-
tioning – kernelization –, and the branch and bound ap-
proach for the hard kernel. It was compiled for the 2019
PACE exact vertex cover challenge, but this article tries to
answer the question if combining the two approaches would
result in a solver good for both set of usual test problems.

First, we should check if it is good for minimum vertex cover.
On the 2019 PACE competition, which was open for any
contestants, the program resulted in third place (76 solved
instances from 100), while the second place solved 77, and
the first place 87. We also tried the program against some
problems listed in the T. Akiba and Y. Iwata [1] paper. We
looked at especially hard cases. Some of those we could not
solve because of memory limitations – it is obvious for us,
that some engineering refinement of our program could elim-
inate such problems. But one example showed the advan-
tages of the program clearly. We could solve web-Standford
graph in 40 minutes, while the best approach was 18 hours.
These results clearly show that this approach is fruitful and
maybe the desired one for minimum vertex cover.

Second, we also checked our program against the usual max-
imum clique finding problems. We found little difference
from our previous version, but few due to the fact that we in-
verted the sequence in kclique-sequence. (For detailed com-
parison see [17].) Some tests run faster, a few slower. In
fact the reduction played little to no role in solving these in-
stances, explaining why such reductions are usually not im-
plemented in maximum clique search programs. This result

73



clearly says, that our modified program is still very compet-
itive in maximum clique searching.

Summarizing the above, we could show, that the combi-
nation of strong reductions as kernelization and a sophis-
ticated branch and bound program for hard kernels can
be among best three minimum vertex cover and maximum
clique search programs at the same time. We should also
point out, that all three winners in the PACE 2019 exact
vertex cover competition used the same approach and used
reduction with a program that was originally designed for
maximum clique search. See for details [9].
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ABSTRACT
Dividing a graph into two smaller ones in the course of a
clique search algorithm is referred to as branching. In the
most commonly used clique search procedures the sizes of
the resulting subgraphs may widely differ. In an earlier
work a novel branching method, the method of splitting
partitions, was suggested to overcome this unbalance. The
present paper revisits this branching idea. This time we will
describe a practical technique to construct splitting parti-
tions. In order to assess the performance of the procedure
we carried out numerical experiments.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms
Theory

Keywords
maximum clique, branch and bound, parallelization

1. INTRODUCTION
Let G = (V,E) be a finite simple graph. Here V is the set
of nodes and E is the set of edges of G. The set of edges
E consists of unordered pairs of elements of V . The graph
G does not have double edges or loops. Both sets V and E
have finitely many elements.

A subgraph ∆ of G is called a clique in G if two distinct
nodes of ∆ are always adjacent in G. If the clique ∆ has k
nodes we will say that ∆ is a k-clique in G. A clique ∆ is
maximal if it cannot be extended to a larger clique in G by
adding a node of G to ∆. A k-clique ∆ in G is a maximum
clique if G does not contain any (k + 1)-clique. A graph G
may contain maximal cliques of various sizes. But all the
maximum cliques of G have the same size. This well defined

number is called the clique number of G and it is denoted
by ω(G).

Problem 1. Given a finite simple graph G = (V,E). De-
termine ω(G).

Problem 2. Given a finite simple graph G = (V,E) and
given a positive integer k. Decide if G contains a k-clique.

Problem 1 is referred to as the maximum clique problem. It
is an optimization problem and by the complexity theory of
the algorithms it belongs to the NP-hard complexity class.
Problem 2 is referred to as the k-clique problem. It is a
decision problem and by the complexity theory of the algo-
rithms it belongs to the NP-complete complexity class. (For
further details see [3].) Both problems have many applica-
tions and considered to be important problems in theoretical
and practical computer science.

Many clique search algorithms used in practice have the fol-
lowing structure. Using relatively inexpensive methods up-
per and lower bounds for the clique size of the given graph
are established. If the lower and upper estimates are equal,
then the clique size of the graph is computed. If there is
a gap between the upper and lower estimates, then we di-
vide the clique search instance into smaller instances. In
short we carry out an optimality test and when this test is
inconclusive a branching takes place.

Let G = (V,E) be a finite simple graph. The ordered triplet
(P,Q,R) of the subsets P,Q,R ⊆ V is called a splitting par-
tition of the graph G if the following conditions are satisfied.

(1) P ∪Q ∪R = V .

(2) P 6= ∅, R 6= ∅.

(3) P ∩Q = P ∩R = Q ∩R = ∅.

(4) p ∈ P , r ∈ R implies that the unordered pair {p, r} is
not an edge of the graph G.

Let H be the subgraph of G induced by the set of nodes
P ∪Q and let K be the subgraph of G induced by the set of
nodes Q ∪ R. Let ∆ be a clique in G. In [5] it was proved
that either ∆ is a clique in H or ∆ is a clique in K. This
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Table 1: The adjacency matrices of the graph in
Example 1. In the second adjacency matrix we re-
arranged the rows and columns to make the splitting
partition more visible.

1 2 3 4 5 6
1 × • • •
2 • × •
3 • × • •
4 • • × •
5 • • ×
6 • ×

1 5 2 4 3 6
1 × • • •
5 • × •
2 • × •
4 • • × •
3 • • × •
6 • ×

@
@
@
@
@
@s s s s

s s

6 3 4 5

2 1

Figure 1: A graphical representation of the graph G
in Example 1.

result has the following consequence. If we are looking for
a maximum clique in the graph G, then we may restrict
our attention to look for a maximum clique in the smaller
graphs H and K. The larger are the sizes of the sets P
and R the smaller are the subgraph H and K. Thus if we
are able to locate a splitting partition in a computationally
affordable manner, then this splitting partition maybe used
as a branching rule in a maximum clique or in a k-clique
search algorithm.

In this paper we will propose a method to locate splitting
partitions in a given graph. There is no guarantee that the
proposed procedure provides splitting sets with optimal P
and R sets. We will carry out numerical experiments to
demonstrate that the procedure works reasonably well.

2. THE EDGE AUXILIARY GRAPH
Given a finite simple graph G = (V,E) we construct a new
auxiliary graph Γ = (W,F ). The nodes of Γ are ordered
pairs w = (x, y) for which x, y ∈ V , x 6= y and the unordered
pair {x, y} is not an edge of the graph G. Two distinct nodes
w1 = (x1, y1) and w2 = (x2, y2) are adjacent in the graph Γ
if any of the following two conditions is satisfied.

(1) x1 = x2 or y1 = y2.

(2) x1 6= x2, y1 6= y2 and the unordered pairs {x1, y2},
{x2, y1} are not edges of the graph G.

We call the graph Γ the edge auxiliary graph associated with
the graph G.

Lemma 1. If the ordered triplet (P,Q,R) of the subsets
P,Q,R ⊆ V forms a splitting partition of the graph G, then
the edge auxiliary graph Γ = (W,F ) contains a k-clique ∆,
where k = |P ||R|.

Proof. Let us assume that the ordered triplet (P,Q,R)
of the subsets P,Q,R ⊆ V forms a splitting partition of the
graph G and let us consider the following list

(p, r), p ∈ P, r ∈ R (1)

of ordered pairs. Clearly, the ordered pairs on list (1) are
pair-wise distinct and in addition p 6= r holds for each or-
dered pair. The list (1) contains k = |P ||R| ordered pairs.
Note that if (p1, r1) and (p2, r2) are two distinct ordered
pairs from the list (1), then they are adjacent nodes of the
edge auxiliary graph Γ = (W,F ).

Next assume that we have located a k-clique ∆ in the edge
auxiliary graph Γ = (W,F ) and the ordered pairs

(x1, y1), . . . , (xk, yk) (2)

are all the nodes of ∆. Let p1, . . . , pα be all the distinct
elements among x1, . . . , xk and let r1, . . . , rβ be all the dis-
tinct elements among y1, . . . , yk. Set P = {p1, . . . , pα},
R = {r1, . . . , rβ}, Q = V \ (P ∪R).

Lemma 2. With the sets P,Q,R ⊆ V defined above the
triplet (P,Q,R) forms a splitting partition of the graph G.

Proof. Clearly, the conditions (1), (2), (3) in the defini-
tion of a splitting partition are satisfied. We need to verify
only that condition (4) is also satisfied. Let us consider the
following list of ordered pairs

(p1, r1) . . . (p1, rβ)
...

. . .
...

(pα, r1) . . . (pα, rβ)

(3)

arranged into α rows and β columns. The reader will notice
that each element of the list (2) appears on list (3). If an
ordered pair (pi, rj) on list (3) appears on list (2), then we
underline the pair (pi, rj).

Note that p1 is equal to the first component of one of the
pairs on the list (2). It means that at least one of the pairs
of the first row of list (3) is underlined. In general each row
of list (3) contains at least one underlined pair. A similar
reasoning gives that each column of list (3) contains at least
one underlined pair. If the ordered pair (pi, rj) on list (3)
is underlined, then it is a node of the clique ∆ and conse-
quently the associated unordered pair {pi, rj} is not an edge
of the graph G.

We claim that for each ordered pair (pi, rj) on list (3) the
associated unordered pair {pi, rj} is not an edge of the graph
G.

In order to verify the claim assume on the contrary that
there is an ordered pair (pi, rj) on list (3) such that the
associated unordered pair {pi, rj} is an edge of the graph
G. There is an index t such that the ordered pair (pi, rt)
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Table 2: The adjacency matrix of the edge auxiliary
graph Γ in Example 1.

1 1 2 2 2 3 3 4 4 5 5 5 6 6 6 6
3 6 4 5 6 1 5 2 6 2 3 6 1 2 4 5

1,3 × • • •
1,6 • × • • • •
2,4 × • • • •
2,5 • × • • • •
2,6 • • • × • •
3,1 × • • •
3,5 • • × • •
4,2 × • • • •
4,6 • • • × • •
5,2 • • × • •
5,3 • • • × •
5,6 • • • • • • ×
6,1 • • × • • •
6,2 • • • × • •
6,4 • • • • × •
6,5 • • • • • • • ×

on list (3) is underlined. Similarly, there is an index s such
that the ordered pair (ps, rj) on list (3) is underlined. In
this situation the ordered pairs (pi, rt) and (ps, rj) are nodes
of the clique ∆ in the edge auxiliary graph Γ. Since the
edges (pi, rt), (ps, rj) are adjacent in Γ, it follows that the
unordered pairs {ps, rt}, {pi, rj} are not edges of the graph
G. This contradicts to the fact that the unordered pair
{pi, rj} is an edge of the graph G.

3. LEGAL COLORING OF THE NODES
In section 2 we have reduced the problem of spotting a split-
ting partition to the problem of spotting a clique in the edge
auxiliary graph. There is a large number of algorithms for
locating a not necessarily maximum clique in a given graph.
In the literature they came under the name of non-exact
clique search algorithms. Coloring of the nodes can be used
to locate suboptimal cliques in a straight-forward manner.

The problem of determining the chromatic number of a given
graph is an NP-hard problem. (For further details see [3].) It
is an empirical fact that legally coloring the nodes of G using
not necessarily the optimal number of colors has practical
utility. In this paper we will use two approximate coloring
algorithms. The first one is is known as the simple greedy
node coloring and the second one is the so-called dsatur
algorithm. (For further details see [2], [1], [8].)

A legal coloring of the nodes of the finite simple graph G =
(V,E) can be conveniently described by a function f : V →
{1, . . . , k}. Here the numbers 1, . . . , k stand for the colors
and the equation f(v) = i expresses the fact the node v
receives color i. The set of nodes Ci = {v : v ∈ V, f(v) = i}
is called the i-th color class. It is the set of nodes ofG colored
by color i.

It is plain that a color class is an independent set of the graph
G. Therefore the elements of a color class form the nodes
of a clique in G the complement graph of G. So when we

s1,3 s1,6 s2,4

s2,5

s2,6

s3,1

s3,5s4,2s
4,6

s5,2

s5,3

s5,6

s6,1

s6,2

s6,4

s6,5

Figure 2: A geometric representation of the edge
auxiliary graph Γ in Example 1

are looking for a clique in the edge auxiliary graph to locate
a splitting partition we may do this by legally coloring the
nodes of the complement of the auxiliary graph. We may
pick the elements of any color class as the nodes of a clique.

4. A SMALL SIZE TOY EXAMPLE
In order to illustrate the results presented so far we work
out a small size example in details.

Example 1. Let us consider the graph G = (V,E). Here
V = {1, . . . , 6}. The adjacency matrix of G is depicted in
Table 1. Figure 1 shows a geometric representation of G.

There reader can verify easily that the triplet (P,Q,R) of
the subsets

P = {1, 5}, Q = {2, 4}, R = {3, 6} (4)

is a splitting partition of the graph G. Note that upper right
and the lower left two by two sub-matrices are unfilled in the
second adjacency matrix in Table 1.

Using the graph G we constructed the edges auxiliary graph
Γ. Table 2 displays the adjacency matrix of Γ. The rows and
columns of this adjacency matrix are labeled with ordered
pairs. In order to avoid an overly cluttered table we sup-
pressed the parentheses when we recorded the ordered pairs.
For instance instead of (1, 3) we wrote simply 1, 3. Figure
2 depicts a geometric representation of the edges auxiliary
graph Γ.

Next we legally colored the nodes of Γ using the greedy
sequential coloring procedure. The color classes are the fol-
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lowing

C1 = {(1, 3), (1, 6), (5, 3), (5, 6)},
C2 = {(2, 4), (2, 5), (2, 6)},
C3 = {(3, 1), (3, 5), (6, 1), (6, 5)},
C4 = {(4, 2), (4, 6), (5, 2)},
C5 = {(6, 2), (6, 4)}.

Applying Lemma 2 to the first color class gives the splitting
partition based on the subsets (4). Using the fourth color
class we get a splitting partition based on the subsets P =
{4, 5}, Q = {1, 3}, R = {2, 6}. Although the fourth color
class has fewer elements than the first color class the two
resulting splitting partitions have the same sizes.

As a last step we legally color the nodes of the edge auxiliary
graph Γ. The nodes of Γ can be legally colored using 5 colors.
The nodes of a clique must receive pair-wise distinct colors
at a legal coloring of the nodes of a graph. This implies that
the clique number is less than or equal to the chromatic
number for each finite simple graph. Therefore, the clique
number of the edge auxiliary graph Γ is at most 5. On the
other hand we have located a 4-clique in Γ. The moral of
this observation is that a legal coloring of the nodes of the
edge auxiliary graph can be used to assess how far is the
spotted suboptimal clique, we use to construct a splitting
partition, from the optimal clique size.

5. NUMERICAL EXPERIMENTS
For testing purposes we have selected three infinite families
of graphs that are connected to the existence and construc-
tion of certain error detecting and error correcting codes.
The so-called monotonic matrices are in intimate connection
with codes over the alphabet {1, . . . , n}. Each code words
has length three. The problem is to find a code whose inner
distance is at least two. (See [6], [7].) The deletion error de-
tecting codes are consisting of binary code words of length
n. These words are sent over a noisy channel. Due to trans-
mission error on the receiver side a shorter word may arrive.
The task is devise a code that makes possible to detect a one
bit deletion error. (For further details see [4].) The Johnson
codes we are considering here are binary codes with word
length n. Each code word consists of 4 1’s and n − 4 0’s.
The Hamming distance of two distinct code words is at least
3.

The results of the numerical experiments are summarized in
the Tables 3, 4. We describe the meaning of the entries using
the last row of Table 3 as an illustration. A graph G is as-
sociated with a monotonic matrix of parameter n = 6. The
graph has |V | = 216 vertices. The associated edge auxiliary
graph Γ has |W | = 11 340 nodes. These numbers occupy
the cells in the first three columns of the row. The split-
ting partition (P,Q,R) we have spotted has the parameters
|P | = α = 9, |R| = β = 14 and the last two columns contain
these α, β values. This time we used the dsatur coloring
procedure to get a legal coloring of the nodes of the edge
auxiliary graph Γ.

At this stage we may conclude that the algorithm seems to
work in connection with non-trivial size graphs in a reliable

Table 3: Monotonic matrices.

n |V | |W | α β
3 27 324 3 4
4 64 1 440 5 6
5 125 4 500 7 10
6 216 11 340 9 14

Table 4: Johnson codes and Deletion error correct-
ing codes.

n |V | |W | α β
6 15 120 2 4
7 35 420 2 5
8 70 1 120 2 6
9 126 2 520 1 20

10 210 5 040 2 8
11 330 9 240 4 4
12 495 15 840 4 5

n |V | |W | α β
3 8 38 3 3
4 16 126 3 4
5 32 382 3 5
6 64 1 086 4 4
7 128 2 942 4 7
8 256 7 678 5 6

manner. Only after working with the algorithm for a longer
period of time involving a much wider variety and range of
graphs would enable us to assess the merits of the proposed
procedure.
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ABSTRACT
Tensiomyography is a muscle performance assessment tech-
nique that measures its mechanical responses. In this study,
we explore a possibility to replace traditional tensiomyogra-
phy measurement system with motion capture. The proposed
method allows for measurement of multiple muscle’s points
simultaneously, while achieving measurements during a pa-
tient’s movements. The results show that approximately 5mm
error is achieved when estimating maximal muscle displace-
ment, while time delay in muscle contraction and contrac-
tion time are assessed with upto 20ms error. As confirmed
by physicians, the introduced errors are with the acceptable
margin and, thus, the obtained results are medically valid.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
I.3.8 [Computer Graphics]: Computational Geometry and
Object Modeling; J.3 [Life And Medical Sciences]:

Keywords
Tensiomyography, marker-based motion capture, 3D points,
geometric transformation

1. INTRODUCTION
Tensiomyography (TMG) is a non-invasive mechanomyogra-
phy method that measures muscle mechanical response based
on radial muscle belly displacement induced by electrical stim-
ulus. Measurement unit usually includes an electrical stimu-
lator, data acquisition subunit, a digital sensor, and muscle
electrodes [2]. TMG output is a displacement-time curve eval-
uated with following parameters: Delay time (Td) is a time
difference between the electrical impulse and 10% of the con-
traction, contraction time (Tc) is a time difference between
10% and 90% of the contraction, sustain time (Ts) is a time
difference between 50% of the contraction and 50% of the re-
laxation, and relaxation time (Tr) is a time difference between
90% and 50% of the relaxation and maximal displacement of
the muscle contraction (Dm). TMG is used in order to eval-
uate individual’s maximal speed, explosiveness, endurance,

∗Author is with Institute of Computer Science, Faculty of
Electrical Engineering and Computer Science at the Univer-
sity of Maribor, Maribor, Slovenia, 2000
†Author is with Institute of Sports Medicine, Faculty of
Medicine at the University of Maribor, Maribor, Slovenia,
2000

and flexibility [13]. It is also applied in training optimiza-
tion process in order to prevent negative effects of muscle
asymmetry and asynchrony on individual’s performance [16].
Additionally, after an injury, muscle functional capacity can
be assessed using TMG, so that the most effective rehabilita-
tion treatment is administered [17]. In medical research it is
used in order to estimate muscle composition [18], for evalua-
tion of muscle atrophy [9], measuring adaptation to different
pathologies [10], and in order to determine muscle fiber type
composition [6]. However, following TMG drawbacks can be
identified: it is a fixed, static tool, which can perform single
point measurements [2], [9], reliable measurement is highly
dependent on an experienced measurer, since sensor and elec-
trode placement could affect the reliability of the results [18],
and measurements are generally performed in a static and re-
laxed position [2].
In order to address the above-mentioned issues, we propose a
method that generates output similar to TMG using a marker-
based motion capture. It allows a measurement of multiple
points simultaneously, thus reducing the effort required in or-
der to measure muscle contractions. The measurements can
be achieved not only in relaxed positions, but also while mov-
ing, as control markers are used in order to stabilize limb
natural movement in makers. The rest of the paper is or-
ganised as follows: a related work is present in Section 2.
Section 3 introduces a new method that estimates TMG out-
put from motion capture. The results of proposed method are
presented in Section 4. Section 5 concludes the paper.

2. RELATED WORK
Motion capture allows for recording the movement of objects
or people. Various marker-based motion capture types ex-
ist, such as acoustical systems, mechanical systems, magnetic,
and optical systems. All mentioned technologies result in a
time series of 3D positions of markers. Focus of this paper
is on optical marker-based system. Using cameras, it records
motions of special makers attached to an object. There are
two types of markers: Passive markers that reflect light gen-
erated near cameras lens and active markers that emit their
own light. Data captureed from image sensors is used in or-
der to triangulate the 3D positions of a marker between two
or more cameras calibrated in order to provide overlapping
projections [11]. Motion capture has already been used in
the sports, medicine, and entertainment industry for years.
In the latter, method for capturing and modelling skin de-
formation in human motion [14] was proposed. It computes
the motion of the skin by segmenting markers into the motion
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of a set of rigid parts and residual deformations in order to
animate the natural bending, bulging, and jiggling of the hu-
man form. A framework for high-fidelity facial performance
acquisition, presented in [12], combines motion capture and
3D data scans in order to automatically select a minimum set
of facial expressions by minimizing the reconstruction errors
associated with correspondences between the motion capture
markers and the face scans.
On the other hand, 3D motion capture Microsoft Kinect was
proposed as a tool for gait analysis opposed to Vicon 3D
motion capture, used in sport medicine, rehabilitation, and
treatment for motor impairments. Captured 3D data was
then processed in order to determine the accuracy of each
system [15]. Integration of a real-time, interactive biofeed-
back stimulus from motion capture system was proposed as
improvement of anterior cruciate ligament injury prevention
and rehabilitation program in [3]. A methodology to preform
functional simulations of the hip joint in extreme positions
was presented in [4]. The authors of the above mentioned
study have shown that active range of motion of the hip joint
could be accurately determined with 3D reconstruction from
motion capture data, which is difficult to achieve in everyday
clinical practice. Hand movement reconstruction based on 3D
point transformation of joints was shown as a good tool for
clinical application [7]. Marker-based motion capture is fre-
quently used for gait and skeleton analysis in sports medicine
as well as for animating 3D objects in entertainment indus-
try. Previously mentioned cases provide a solid foundation
for technology used in our example.

3. METHOD
In this section, a method for estimating TMG parameters
from 3D motion capture data is presented. The proposed
method uses a set of markers in order to trace muscle con-
traction using motion capture, while TMG parameters are
estimated during the following steps:
i) Point stabilization is achieved first in order to compensate
for limb natural movements and preserve only those move-
ments that result from muscle contractions.
ii) Construction of displacement-time curves is achieved next
by estimating displacement distances from stabilized 3D marker
positions. Extraction of TMG parameters is finally achieved
based on the estimated displacement-time curve.
Following the description of the mathematical framework, these
steps are described in detail.

3.1 Theoretical background
The implementation of the proposed mathematical framework
is given in homogeneous coordinate system. This allows for
implementing all the used geometric transformations, includ-
ing translation, by matrix multiplication and, thus, enables
efficient utilisation of graphic processing unit (GPU) [8].
Let a set of markers M =

{
tmi

}
, where tmT

i = [txi,
t yi,

t zi, 1],
while i is a markers index and t is the time t of its capture.
A vector between points tmi and tmj is denoted as t~vi,j =
tmi− tmj , while its projections to XY− and XZ−planes are
denoted as tuT

i,j = (txi,j ,
tyi,j , 1) and twT

i = (txi,j ,
tzi,j , 1),

respectively. A translation for an arbitrary vector t~vT =
(xT , yT , zT ) is then given by a translation matrix MT . In
addition, rotation matrices MRy (Θy) and MRz (Θz) define ro-
tation around Y− and Z−axis for given angles Θy and Θz,
respectively [19].

3.2 Point stabilization
In order to account for natural movement of limb, two control
markers need to be placed on the limb joints in such a way
that they are not affected by the movement of the measured
muscles. Thus, they are used for point stabilization and are
referred to as control markers defined by the indices i = 1
and i = 2. A stabilized set of markers can, therefore, be ob-
tained by translating the corresponding control vector t~v1,2 to
the origin of a given coordinate system and aligning it with
the X−axis. Note that latter only requires rotation around
Y− and Z−axis, while the rotation round X−axis can be
neglected due to the nature of measurement that limits such
limb movements. Thus, a stabilization transformation can be
defined by translation for a vector ~vT = (tx1,

ty1,
tz1) and

two rotations, defined by rotation angles Θy and Θz. Note
that rotation angles tΘz and tΘy are defined as angles be-
tween projected vectors t~u1,2 and t ~w1,2 and the X−axis, re-
spectively [19]. Point stabilization transformation MS can
then be defined by

MS = MT (tm1) ∗MRy (Θy) ∗MRz (Θz) =
costΘycos

tΘz −sintΘzcos
tΘy sintΘy

tx1

sintΘz 0 0 ty1
−sintΘycos

tΘz sintΘysin
tΘz costΘy

tz1
0 0 0 1

 .
(1)

A stabilized set of markers TM ′ =
{
tm′

i

}
, where tm′

i =

(tx′
i,
t y′

i,
t z′i) is, thus, given as:

tm
′
i = MS ∗ tmi. (2)

3.3 Construction of displacement-time curves
and TMG parameters extraction

The objective of this step is to construct a displacement time
curves from TM ′ and extract the required TMG parame-
ters. As muscle contraction is captured by the movement
of stabilised markers, a displacement curve for each marker
tm′

i ∈T M ′ is generated by measuring its distance tdi in time
t > 0 from its starting point, given at t = 0. Formally, a
displacement curve is given by a discrete mapping function
D : (t, i)→ R defined by:

D(t, i) =
√

(0m′
i − tm′

i)
2. (3)

As Eq. 3 cannot produce negative values, it is critical that
the initial measurement given at time t = 0 is measured in
the relax (non-contracted) state of the muscle. D(t, i), thus,
provides a set of control points based on which a polynomial
interpolation is achieved in order to increase the precision of
the estimated TMG parameters. As polynomial interpola-
tion is a well-know problem, it is not further discussed here.
Its efficient implementation is described in [5]. Moreover, as
explained in Section 1, there are five parameters that can be
extracted from a displacement curve, where most of the medi-
cally relevant information is contained in maximal contraction
Dm, delay time Td, and contraction time Tc. Given an inter-
polated displacement curve di(t), definitions are as follows:

Dm(i) = max
t

di(t),

Td(i) = arg min
t

(t; di(t) ≥ 0.1 ∗Dm(i)),

T c(i) = Td(i)− arg min
t

(t; di(t) ≥ 0.9 ∗Dm(i)).

(4)
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Figure 1: Displacement-time curves from traditional TMG and markers of muscles a) rectus femoris and b) vastus medialis.

Table 1: Results of parameters extraction from selected markers and parameters of traditional TMG.

Rectus femoris Vastus medialis

TMG m3 m4 m5 m8 m9 m13 m14 TMG m3 m4 m5 m8 m9 m13 m14

Dm (mm) 11.4 6.9 7.5 10.3 7.4 7.0 7.3 6.7 9.9 7.7 7.2 7.2 9.9 8.6 6.2 6.9
Td (ms) 26.1 16.1 7.4 21.7 9.9 17.6 2.2 1.7 25.1 3.9 2.6 7.3 1.0 1.5 2.0 3.1
Tc (ms) 42.9 39.4 44.3 27.8 37.6 27.6 41.4 38.7 30.6 45.7 47.6 38.7 32.5 40.7 38.9 36.5

Dm error 4.5(39%) 3.9(34%) 1.1(10%) 4(35%) 4.4(39%) 4.1(36%) 4.7(41%) 2.2(22%) 2.7(27%) 2.7(27%) 0(0%) 1.3(13%) 3.7(37%) 3(30%)

Td error 10(38%) 18.7(72%) 4.4(17%) 16.2(62%) 8.5(33%) 23.9(92%)24.4(93%) 21.2(84%) 22.5(90%)17.8(71%)24.1(96%) 23.6(94%) 23.1(92%) 22(88%)

Tc error 3.5(8%) -1.4(3%) 15.1(35%) 5.3(12%) 15.3(36%) 1.5(3%) 4.2(10%) -15.1(49%) -17(56%) -8.1(26%) -1.9(6%) -10.1(33%) -8.3(27%) -5.9(19%)

4. RESULTS AND DISCUSSION
During the experiment, 3 × 5 matrix of markers was placed
on the quadriceps femoris of the left leg of the tested subject,
while two control markers were placed over the trochanter
head and lateral condyle (see Fig. 2). Muscles contractions
were captured with a Smart-D, BTS s.p.a. motion capture
system [1] that consisted of 8 infra-red cameras with 800×600
spatial and 60Hz temporal resolution. Rectus femoris and vas-
tus medialis muscles were stimulated with a single maximal
electrical impulse, while control measurements were obtained
using a traditional TMG sensor.
The implementation of the proposed method was done using
C++ and all the execution times were measured on a work-
station with Intel R© CoreTM i5TM-8400 CPU, Nvidia GeForce
GTX 970 and 16 GB of main memory. As geometrical trans-
formation were implemented on GPU, their computational
complexity is O(n), where n is the number of markers (in our
case n = 15). On the other hand, the complexity of polyno-
mial interpolation which is used in TMG parameter extraction
is O(m2), where m is the number of points used for the inter-
polation. Thus, the theoretical computational complexity of
the proposed method is equal to O(n ∗m2).
As shown in Fig. 1, the obtained displacement-time curves
display different level of agreement with the control TMG
measurement. Higher agreement was detected in cases of
markers, placed near to the TMG sensor, namely m5 in case of
rectus femoris and m8 in case of vastus medialis stimulation.
In addition, m3, m4, m9, m13, and m14 showed statistically
significant correlation (over 0.8) with the control measure-
ments and, thus, TMG parameters extracted from this par-
ticular markers were further examined. The obtained results
are show in Table 1. When considering Dm and Td of rec-
tus femoris, the lowest error rates were observed in case of m5

with 1.1mm and 4.4ms respectively, while error rates between
3.9− 4.7mm in case of Dm and 8.5− 24.4ms in case Td were
observed in other cases. On the other hand, Tc related error
rates were the lowest in case of m4 (−1.4ms) and the high-
est in case of m9 (15.3ms). As with m5 induced error-rate
equal to 5.3ms. In case of vastus medialis, no Dm error was
observed at m8, while the error rates in other cases ranged
between 1.3− 3.7mm. On the other hand, m8 introduced the
highest Td error of 24.1ms. Tc error rates were in the range
from −1.9−17ms, with the smallest related to m8. According
to the evaluation provided by the medical experts, the mea-
sured errors were, thus, within the acceptable ranges and can
be considered as medically irrelevant. The error of Dm can be
explained by the fact that the TMG sensor is slightly pressed
into the soft tissue, resulting in small depression at baseline
level causing higher value of Dm when a traditional TMG is
measured. As expected, there were high errors in Td param-
eter, since the signals from motion capture and TMG were
not properly synchronized. On the other hand, markers m3

and m4 registered significant movements, even though they
were not placed in the anatomical regions, where contraction
of Rectus femoris and Vastus medialis was expected. Such an
outcome might have different explanations:
i) strong electrical stimulation can cause the propagation of
the electrical stimuli in deeper tissues, causing muscle con-
traction of adjacent muscles,
ii) the passive mass, represented by inactivated muscles and
adipose tissue near the stimulated region can vibrate, causing
errors in measurements.

5. CONCLUSION
A new method for estimating TMG parameters from 3D mo-
tion capture, proposed in this paper, allows for measurement
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Figure 2: Placement of fifteen markers and two control mark-
ers on the subject’s leg. Violet area represents placement of
TMG sensor during measurement, while red circles indicate
control markers.

of TMG parameters at multiple points simultaneously, while
measurements can be obtained during the patient’s move-
ment. With the error rates of 5mm when estimating max-
imal muscle displacement and upto 20ms when estimating
delay time and contraction time, the provided results proved
to be medically relevant. Nevertheless, selection and a proper
placement of markers is required.
One of the future tasks is synchronization of the TMG and
motion capture signals that would allow for obtain the ex-
act starting time of muscle contraction and, thus, further im-
proved contraction and delay time assessment. In addition,
improved point stabilization with compensating for rotations
along X-axis will be considered. Finally, as the described
study is only a proof of concept, additional test, together with
statistical analysis of the extended results, are required in or-
der to prove its value.
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ABSTRACT
Global is an optimization algorithm conceived in the ’80s.
Since then several papers discussed improvements of the al-
gorithm, but adapting it to a multi-thread execution envi-
ronment is only a recent branch of development [1]. Our
previous work focused on parallel implementation on a sin-
gle machine but sometimes the use of distributed systems
is inevitable. In this paper we introduce a new version of
Global which is the first step towards a fully distributed algo-
rithm. While the proposed implementation still works on a
single machine, it is easy to see how gossip based information
sharing can be built into and be utilized by the algorithm.
We show that ParallelGlobal is a feasible way to implement
Global on a distributed system. However, further improve-
ments must be made to solve real world problems with the
algorithm.

Categories and Subject Descriptors
[Computing methodologies]: Optimization algorithms;
[Computing methodologies]: Parallel algorithms

1. INTRODUCTION
Global is an optimization algorithm built from multiple mod-
ules working in an ensemble. While older implementations
viewed the algorithm as a whole, the most recent GlobalJ
framework handles algorithms as a collection of interlock-
ing modules. GlobalJ has several implementations for local
search algorithms and variants of Global. Main characteris-
tics of the single threaded version were established in [4]. In
recent years Global was further developed [6] and it has sev-
eral applications [5, 10] where it aids mostly other research
works. To speed up optimization processes we developed
an algorithm [1] that is capable of utilizing multiple compu-
tational threads of a single machine. It cannot be directly
implemented for distributed systems as the millisecond order
of magnitude latency in communication would significantly
slow down the synchronization of threads. To mitigate this
problem we propose ParallelGlobal, a parallel implementa-

tion suitable for distributed systems with high latency or
even with unreliable communication channels. In this paper
we introduce an experimental version whose main purpose
is to test the feasibility of the proposed solution. It provides
an algorithm skeleton for a real distributed implementation.

2. GLOBAL
Global is a global optimizer designed to solve black box un-
constrained optimization problems with low number of func-
tion evaluations and probabilistic guarantees [1, 2, 3, 4, 6, 7,
8, 11]. It uses local search algorithms to refine multiple sam-
ple points hence Global is a multi-start method. Global also
utilizes the Single Linkage Clustering algorithm to make an
estimation about the value of samples from the aspect of
optimization.

2.1 Updated Global Algorithm
While the updated Global algorithm has only minor changes
and in a lot of cases performs equally to the original, it is
superior in execution order, therefore we consider it as the
basis for improvements.

Global has an iterative framework where samples in an it-
eration compete with samples of previous iterations. The
original version contains four phases in every iteration con-
sisting of sampling, reduction, clustering and local search. In
the updated algorithm the clustering and local search phases
are merged by an implementation alternating between the
two.

Algorithm 1 describes the updated Global in detail. In lines
2-5 the algorithm performs the sampling phase. Selection of
sample points is stochastic, using uniform distribution in the
search space. The generated samples are placed in container
S which is a list structure. To find the most promising
samples, S is sorted and a reduced set of samples is acquired
with the lowest function values. R contains the reduced set,
which is removed from S.

When samples are ready to be processed, in lines 6-24 the
algorithm alternates between clustering and local searches
while there are unprocessed samples left. At 7-15 samples
in R are tried against the clustered samples. To determine if
ri ∈ R is part of cluster C we need the distance threshold dc.
dc depends on the dimension of the objective function, the
number of samples currently known in the clustering pro-
cess and the α ∈ [0, 1] parameter. The latter controls the
decrease speed of dc while more samples are added, in order
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Algorithm 1 GLOBAL

1: while termination-criteria() is not true do
2: S ← S∪{ni = uniform(lb, ub) : i ∈ [1, new samples]}
3: S ← sort(F (si) < F (si+1)), si ∈ S
4: R← {si : i ∈ [1, reduced set size]}
5: S ← S \R
6: while R is not ∅ do
7: for C in clusters do

8: dc ←
(
1− α

1
|clustered|+|R|−1

) 1
dim(F )

9: N ←
{
ri : dc > ∥ri − cj∥∞ ∧ F (ri) > F (cj)

}
10: if N is not ∅ then
11: C ← C ∪N
12: R← R \N
13: repeat iteration
14: end if
15: end for
16: l← local-search(r1 ∈ R)

17: Cl, dmin ← argmin
C∈clusters

∥∥∥∥l − argmin
ci∈C,

F (ci)

∥∥∥∥
∞

18: if dmin < dc/10 then
19: Cl ← Cl ∪ {l, r1}
20: else
21: clusters← clusters ∪ {{l, r1}}
22: end if
23: R← R \ {r1}
24: end while
25: end while

to adapt to the expected decrease in distance between two
random samples. With dc set, sample pairs (ri ∈ R, cj ∈ C)
are evaluated to determine if ri is part of C. The two criteria
are having a clustered sample cj with lower function value
than ri and it being closer with the infinity norm (Man-
hattan distance) than dc. Samples in R satisfying both of
them are moved to the current cluster C. When a sample is
clustered, all samples in R can potentially be clustered too
therefore ri ∈ R is rechecked against C. After the for cy-
cle finished, samples in R cannot be the part of an existing
cluster therefore performing a local search is inevitable.

Local searches are performed in lines 16-23, where l is the
local optimum reached from r1. To determine if l is a newly
found local optimum a comparison with the cluster centers
is needed. The center of a cluster is the sample in the cluster
with the lowest function value. By finding the cluster with
the closest center the algorithm can decide if the optimum
is already found. If the distance dmin to the cluster Cl with
the closest center is lower than a tenth of the dc threshold, it
is considered the same local optimum. In this case l and r1
are added to Cl, otherwise they form a new cluster. Since r1
is either in an already existing cluster or in a newly created
one, we can remove it from R. Lines 6-24 are repeated until
R becomes empty. With no unclustered samples left Global
finished an iteration. The number of executed iterations is
limited by the termination criteria.

3. PARALLEL GLOBAL
Our goal is to derive an implementation from the updated
Global which is multi-threaded with low interactions be-
tween threads. The necessity for low thread interactions
comes from the fact that on huge scale optimization tasks a
single computer is not sufficient and in multi-computer envi-
ronments the communication between machines is relatively

slow compared to inter-thread communication. We address
this problem by removing the synchronization of computa-
tional threads and replacing it with a message based infor-
mation sharing scheme.

We can view ParallelGlobal as a naive parallelization of
Global. The main idea lies in the parallel execution of Global
iterations, while sharing information between computational
threads. Consequently, inter-thread communication is nec-
essary, however only a few selected data containers have to
be shared. Also, the shared containers have independent
data points and no deletions, therefore inconsistencies can-
not arise from data insertions. These considerations make
the algorithm for distributed systems viable.

3.1 ParallelGlobal Worker
Algorithm 2 describes the ParallelGlobal worker which is
the implementation of a single computational thread. The
worker might run on a machine by itself, or multiple workers
can use the multi-threaded environment of a computer.

Algorithm 2 ParallelGlobal

1: while termination-criteria() is not true do
2: exchange-data()
3: s← uniform(lb, ub)
4: R← reduce ({s})

5: dc ←
(
1− α

1
|clustered|+1−1

) 1
dim(F )

6: for C in clusters do
7: N ←

{
ri : dc > ∥ri − cj∥∞ ∧ F (ri) > F (cj)

}
8: C ← C ∪N
9: R← R \N
10: end for
11: l← local-search(r1 ∈ R)

12: Cl, dmin ← argmin
C∈clusters

∥∥∥∥l − argmin
ci∈C

F (ci)

∥∥∥∥
∞

13: if dmin < dc/10 then
14: Cl ← Cl ∪ {l, r1}
15: else
16: clusters← clusters ∪ {{l, r1}}
17: end if
18: end while

Similarly to Global, ParallelGlobal also runs in a loop to
complete iterations until a termination criterion is met. Un-
like Global, the new algorithm needs a data exchange step
(line 2). At the start of every iteration, received messages
can be processed and new messages can be sent according
to a suitable policy. The messages contain evaluated data
points arranged into clusters. These clusters can be handled
as if they were evaluated locally by clustering the center
point (minimum) of the cluster. If the center point cor-
responds to an existing cluster, the two clusters should be
merged while duplicate points are filtered out. Otherwise,
the received cluster describes a previously unknown local op-
timum and it can be added to the existing clusters without
modifications.

In lines 3 and 4 happens the sampling and reduction. In
previous Global versions sampling and reduction was per-
formed by taking a randomized sample set, then using a
sorted sample pool and taking the best samples out. Paral-
lelGlobal cannot utilize a common pool efficiently due to the
distributed nature of the system. In this version, for sim-
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plicity we envisioned taking a single sample every iteration
and using stochastic sample reduction, possibly aided with
spatial measures on the samples information value. A more
complex but possible solution would be a distributed sample
pool. Samples could be transferred between local pools over
reliable data connection. This would ensure that a sample is
only evaluated by a single worker and would create a bigger
variety of samples to choose from.

In lines 5-10 occurs the clustering. It is very similar to the
original clustering algorithm. The only change is that we
know that no more than one sample is in R. This is also
true for the local search (lines 11-17) which is identical with
the original local search part.

3.2 Current implementation
The current implementation of ParallelGlobal only simulates
the described functionality with some simplification. First,
it runs on a single machine with multiple threads as a sin-
gle program. Second, messaging is simulated by synchro-
nization on the given containers while they are written, but
reading operations happen simultaneously. During cluster-
ization, the cluster list is only read to a point determined
before the process starts, hence new clusters will be excluded
from already started searches. This also resembles the effects
of messaging, like delays and losses in information spread.
Because no real messaging is present, the exchange-data()
function is only a placeholder for now. The reduce() func-
tion is also a placeholder and the subject of further develop-
ment. Currently, every sample is evaluated by the clustering
and local search steps.

4. RESULTS
The algorithm was examined from two aspects; comparison
with the updated Global in the number of function evalua-
tions and scaling of run time with additional threads. Nu-
merical results were obtained on the following functions,
definitions can be found in [9]. Ackley, Discus, Easom,
Griewank, Levy, Rastrigin, Schaffer, Schwefel, Shekel-5 ,
Shekel-7 , Shekel-10 , Shubert, Spikes1 and Zakharov. For the
evaluations we used two termination criteria, the maximum
number of function evaluations is 105 which is a soft con-
dition therefore overshoot is possible. To check whether an
optimum point is reached we use the following expression

|F (x∗)− F (x)| < 10−8 + |F (x∗)| · 10−6

where x∗ is a known global optimum point and x is the point
in question. To emulate computationally more expensive
functions we defined the hardness level. A hardness level of
h means that the function will be evaluated 10h times at
the requested point. Global is a stochastic optimizer, more-
over ParallelGlobal is also affected by the operating systems
thread scheduling, consequently run times and the number
of function evaluations can differ largely from one optimiza-
tion process to the other. To reduce the noise induced by
this, we obtained data points by averaging the results of 100
runs with every configuration. The algorithm parameteriza-
tions were identical except for the number of threads.

1Spikes function definition:

f(x) =

{
1002 + Πxisin(2πxi), if ∥x− (15.25, 15.75)∥2 > 1

4

1000, otherwise

Shubert

2
0

2
1

2
2

2
3

 1  2  4  8  16

P
a
ra

lle
lG

lo
b
a
l 
÷

 G
lo

b
a
l

Number of Threads

Relative NFEV

10
0
 hardness

10
1
 hardness

10
2
 hardness

10
3
 hardness

2
−2

2
−1

2
0

2
1

 1  2  4  8  16

P
a
ra

lle
lG

lo
b
a
l 
÷

 G
lo

b
a
l

Number of Threads

Relative Speed

10
0
 hardness

10
1
 hardness

10
2
 hardness

10
3
 hardness

Spikes

2
0

2
1

2
2

 1  2  4  8  16

P
a
ra

lle
lG

lo
b
a
l 
÷

 G
lo

b
a
l

Number of Threads

Relative NFEV

10
0
 hardness

10
1
 hardness

10
2
 hardness

10
3
 hardness

2
−5

2
−4

2
−3

2
−2

2
−1

2
0

2
1

2
2

 1  2  4  8  16

P
a
ra

lle
lG

lo
b
a
l 
÷

 G
lo

b
a
l

Number of Threads

Relative Speed

10
0
 hardness

10
1
 hardness

10
2
 hardness

10
3
 hardness

Figure 1: Numeric results on Shubert (left) and
Spikes (right) test functions.

On the left side of Figure 1 we show results for the Shu-
bert test function, namely the number of function evalua-
tions (NFEV) and the speed of the optimization process,
both relative to Global. On the horizontal axes we see the
number of threads. The vertical axes show the number of
function evaluations and optimization processes run in unit
time respectively, both divided by the result of Global on a
single core. Shubert is a function with many local optima
and a flat global trend. In case of Global, NFEV is mostly
in the [500, 2000] range with an average of 900. On the top-
left graph relative NFEV shows that we have an increase
with a factor of two. On a single thread the multiplier of
2 shows that the algorithm is by itself inferior to Global.
This static multiplier is explained by the lack of a sample
pool which reduces the necessary number of local searches.
They create the bulk of the NFEV and while Global uses 1.5
local searches on average ParallelGlobal needs much more.
The dynamic growth is also explained by the local searches,
combined with multi-threading. Finding the global opti-
mum with local search takes several function evaluations in
sequence. Since multiple threads start local searches inde-
pendently, more evaluations can happen until one of them
reaches the global optimum. Moreover when the optimum
is found, the program does not terminate immediately, all
local searches have to finish. This phenomenon increases
the NFEV due to the intrinsic usage of multi-threading and
local searches.

The bottom-left graph of Figure 1 shows the speedup with
additional threads and different hardness values. While for
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hardness 0 and 1 the additional threads caused a slowdown
due to synchronization time and increased NFEV, on com-
putationally more demanding versions we achieved a signif-
icant speedup. The results are promising because for the
hardness value of 3 on a single thread a function evaluation
took only 650µs on average. With higher evaluation times,
the addition of computational power would have more effect.

On the right side of Figure 1, we show the results for the
Spikes test function which also has many local optima and
a flat global trend. ParallelGlobal suffers from the lack of
a sample pool on the Spikes function too. On the other
hand, no dynamic change in NFEV is experienced. Without
a sample pool, ParallelGlobal had a much harder time find-
ing the global optimum, which would often exceed the 105

NFEV limit. This resulted in close to constant NFEV and
no saturation of threads. Based on the relative speed graph,
we gain speed linearly with additional CPU power in every
hardness level. Since the function is very cheap to evaluate
and ParallelGlobal has to do much more evaluations, only
hardness 3 gives an advantage to the multi-threaded imple-
mentation.
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Figure 2: Relative runtimes on all test functions
with 16 threads and hardness 3.

On Figure 2 we show relative runtimes for the configuration
of 16 threads and hardness 3 on every test function. Since
the plot is logarithmic, 0 and values below mean similar and
better results compared to Global. On the functions which
experienced slowdown either the lack of a sample pool or
the intrinsic properties of ParallelGlobal prevented gains in
speed. About 50% of the functions with speedup were solved
successfully where the NFEV limit had no effects.

5. CONCLUSION
During our work we came to multiple important conclu-
sions about the ParallelGlobal algorithm. The most needed
change is the implementation of a distributed sample pool
with sample sharing between threads. Having a set of probe
points in the search space would ensure that local searches
only start from promising regions. This change would prob-
ably move the algorithm much closer to the NFEV values of
Global.

Many of our results show slowdown with ParallelGlobal,
but huge improvements as hardness values increase, Shu-

bert function is a good example. To keep our run times
manageable we kept the hardness value relatively low. By
going up from the current millisecond order to the second
or 10 second order in function evaluations we would have a
clearer image on how much speedup can we achieve. This
would still undershoot the evaluation time of many practical
problems, however it would be sufficient for proper testing
on distributed systems.

To achieve these changes, first the addition of a distributed
framework is needed. Both the sharing of probe samples
and cluster information would rely on it. It is also a key for
testing on computationally expensive problems.
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